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Ghrist, Michelle Lynn (Ph. D., Applied Mathematics)

High-Order Finite Di�erence Methods for Wave Equations

Thesis directed by Professor Bengt Fornberg

We have investigated the very high computational eÆciency of high-order
�nite di�erence methods, especially as they incorporate features such as implicitness
(also known as compactness in the literature) and grid staggering. While remaining
relatively compact, these methods can approach the superior accuracy and e�ective-
ness of spectral methods while still allowing some boundary 
exibility. In the past,
grid staggering has been observed to be bene�cial in some cases (e.g. the Yee scheme
for computational electrodynamics), but that idea has been shown here to combine
favorably with both implicitness and high orders of accuracy.

In addition, we have explored the new idea of grid staggering for time inte-
grators. In the important application of solving linear wave equations (e.g. acoustic
or elastic waves equations, or Maxwell's equations for electromagnetic �elds), nearly
an order of magnitude gain can usually be achieved in accuracy (for the same com-
putational cost in both operation count and in memory) compared to classical ODE
solvers such as Adams or Runge-Kutta methods. In addition, our new staggered
methods have superior stability properties to the classical methods in the context of
solving wave equations. We investigate the accuracy and stability of these methods
analytically, experimentally, and through the use of a novel root portrait technique.
We also consider several theoretical questions concerning these staggered time inte-
grators.
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Chapter 1

Introduction

This thesis documents two research projects which have been carried out at

the University of Colorado at Boulder in collaboration with my supervisor, Professor

Bengt Fornberg, and NSF (later NSF-VIGRE) post-doc Dr. Tobin A. Driscoll.

The two projects are described in Chapters 2 and 3:

2. Spatial �nite di�erence approximations for wave equations

3. Staggered time integrators for wave equations.

Although it is diÆcult to identify individual contributions in collaborative

projects, an attempt will be made in the introduction of each chapter to outline my

contributions to each project.

1.1 Introduction

In many situations, �nding an analytic solution to a partial di�erential

equation or a system of such equations is unrealistic or even impossible; numer-

ical methods that utilize computer algorithms are then used to �nd approximate

solutions. The focus of our research has been to produce new schemes for numeri-

cally solving linear wave-type equations (such as Maxwell's equations, acoustic wave

equations, and elastic wave equations) that are more accurate, less computationally

intensive, and/or easier to implement than currently used industry standards such

as the second order (in both space and time) �nite-di�erence Yee scheme. Compu-

tational cost becomes especially important as the number of equations in the system
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increases.

Finite di�erence methods utilize linear combinations of function values on

a discrete grid to approximate derivative values. These methods have been known

for many years and several newer methods have been found since then (e.g. �nite

elements, spectral, and pseudospectral methods); thus, one might question why we

are revisiting what to some might seem to be an outdated �eld. In the context

of composite grid methods, however, �nite di�erence methods play a key role. For

example, in one model, block pseudospectral methods [1,2] are utilized on boundaries

and interfaces as well as in other regions of high activity, while �nite di�erence

methods are used for the background grid which overlaps with these pseudospectral

strips. Simple, relatively low-cost �nite di�erence methods are used on the majority

of the grid, producing a novel composite method that combines high accuracy with

low computational cost that is still applicable to complex geometries. The speci�c

focus of this research was to explore and improve the �nite di�erence methods and

time stepping methods to be used for this background grid.

The �rst goal of this research project was to investigate the very high

computational eÆciency of high-order �nite di�erence methods, especially as they

incorporate features such as implicitness and grid staggering. Chapter 2 presents

our analysis of �nite di�erence approximations for the �rst derivative in terms of

accuracy and computational cost, considering both explicit and implicit (also known

as compact in the literature) schemes on regular and staggered grids. While both

implicit stencils and staggered grids have been considered before, this is the �rst

study to combine these concepts and to thoroughly analyze them in terms of com-

putational cost. Though the schemes remain relatively compact, they can approach

the superior accuracy and e�ectiveness of spectral methods while still allowing some

boundary 
exibility. Grid staggering has been observed in the past to be bene�cial

in some cases (e.g. the Yee scheme for computational electromagnetics), but our

work has shown that staggering combines quite favorably with both implicitness and
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high orders of accuracy, features that are lacking in the Yee scheme and in most

other previous applications of staggered grids.

The idea to also use grid staggering for time integrators, the topic of Chap-

ter 3, is entirely new. We have explored variations of the Adams-Bashforth, back-

wards di�erentiation, and Runge-Kutta families of time integrators to solve systems

of linear wave equations on uniform, time-staggered grids. In the important appli-

cation of solving linear wave equations (e.g. acoustic or elastic waves, or Maxwell's

equations for electromagnetics), nearly an order of magnitude gain can be achieved

in accuracy (for the same computational cost, in both operation count and mem-

ory) compared to classical nonstaggered time integrators. In addition, the stability

properties of these new staggered methods are superior to the classical methods.

We investigate the accuracy and stability of these new classes of methods analyt-

ically, experimentally, and through the use of a novel root portrait technique. In

addition, several key theoretical results concerning staggered time integrators are

given, including a generalization of Dahlquist's First Stability Barrier for staggered

methods.

Our results have already impacted the �eld of wave computations. For ex-

ample, several research groups (e.g. at Uppsala University and Brown University)

currently employ our staggered time integrators for major industrial electromagnet-

ics calculations. In addition, Weidlinger Associates (in Los Altos, CA) has imple-

mented our methods to simulate e�ects relevant to medical ultrasound, with one

long-term goal being to replace X-rays with ultrasound in areas such as mammogra-

phy. Another potential application for our schemes is forward seismic modeling for

hydrocarbon exploration.
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1.2 Glossary of abbreviations and terms used in this paper

Because we use a number of acronyms which may be unfamiliar to the

reader, a glossary of these abbreviations is included here.

ABp Adams{Bashforth method of order p

ABSp Staggered Adams{Bashforth method of order p

BDp Backwards di�erentiation method of order p

BDSp Staggered backwards di�erentiation method of order p

error constant CoeÆcient C that gives an estimate of local trucation

error to be expected from a method; the local

truncation error is given by Ckp+1f (p+1)(�),

where p is the order of the method.

(To obtain an adequate global error estimate, normalize the

error constant by �(1) for multistep methods. To obtain

a valid comparison, multiply the error constant by sp

for an s-stage method.)

explicit For spatial FD approximations, a method where

one unknown derivative value is given by a linear

combination of known function values.

For FD time integrators, a method where the unknown

(future) function value is given in terms of known

function and derivative values.

FD Finite di�erence

FDTD Finite-di�erence time-domain (see [27])

FPSp Staggered free parameter method of order p
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implicit In spatial FD approximations, a method where linear

combinations of unknown derivative values are given

in terms of linear combinations of known function values.

For time integrators, a FD approximation where the unknown

(future) function value includes a term involving an

unknown (future) derivative value.

ISB Imaginary Stability Boundary - the largest (real) value of SI

such that the interval [�iSI ; iSI ] is contained in the

stability domain of a time-stepping scheme.

(For an s-stage RK method, normalize the ISB by s.)

ODE Ordinary di�erential equation

Pad�e Approximation of a given function by a rational function

(by matching as many derivatives as possible at some point)

PDE Partial di�erential equation

PS Pseudospectral

RKp Runge{Kutta method of order p

RKSp Staggered Runge{Kutta method of order p

Stability domain For a given time integrator, the set of �k

values in the complex plane that give stable solutions for

the problem y0 = �y (k is the step size).

Toeplitz A Toeplitz matrix is constant along all diagonals,

i.e. there exist numbers ��d+1; ��d+2; : : : ; �0; : : : ; �d�1

such that ak;l = �k�l for k; l = 1; 2; : : : ; d:



Chapter 2

Spatial Finite Di�erence Approximations for Wave Equations

The simplest �nite di�erence approximations for spatial derivatives are cen-

tered and explicit and are applied to `regular' equispaced grids. Well-established

generalizations include the use of implicit (compact) approximations and staggered

grids. In this chapter, we �nd that the combination of these two concepts, to-

gether with high formal order of accuracy, is very e�ective for approximating the

�rst derivatives in space that occur in many wave-type PDEs.

2.1 Introduction

Linear wave equations, especially in two or more dimensions, are often

formulated as �rst order systems. First order formulations tend to better re
ect

the physics of the problem and often allow for easier implementation of boundary

conditions. We are not aware of any linear wave equations which cannot be rewritten

as �rst order systems. Thus, in this chapter, we will consider only approximations

of �rst derivatives.

The primary requirements for numerical approximations of spatial �rst

derivatives are

(1) high accuracy,

(2) low operation count,

and the overall resulting method should feature
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(3) compatibility with curved interfaces and non-re
ecting far �eld bound-

ary conditions.

Several numerical approaches excel in one or sometimes two of these re-

spects; for example, �nite element methods have diÆculty achieving high accuracy

without a large operation count, while spectral and pseudospectral methods are often

incompatible with curved interfaces.

We consider the use of composite methods, where high-order interface tech-

niques are used along material discontinuities and boundaries [6, 7] and �nite di�er-

ence methods (for equispaced grids) are used on the remaining areas of the compu-

tational domain. This combination approach meets all three requirements and can

achieve near-spectral accuracy requiring only about 4-5 points per wavelength and

about 6-8 arithmetic operations for each spatial derivative at each grid point, with

full spectral accuracy maintained at interfaces. Figure 2.1 illustrates schematically

how a composite grid for this approach can be structured in the case of coupling of

di�erent media in a 2-D calculation for Maxwell's equations.

This chapter focuses on the problem of obtaining high accuracy economi-

cally on the \background" grid by the use of �nite di�erence methods. This back-

ground grid overlaps at its (usually jagged) edges with a strip following the interface

on which we run a block pseudospectral method, for example. Results on compu-

tations with this composite setup are reported in [7]. Note that because of this

intended usage, we do not discuss here the implementation of traditional boundary

conditions.

The main topics of the remaining Sections 2-9 are as follows:

2. Illustrations of grid staggering

3. Simple symbolic algebra code for calculating weights of �nite di�erence stencils

4. Tables of weights; formulae for weights, including limits of in�nite order

5. Observation that in the limit of increasing order, implicit and explicit formulae

become equivalent in terms of how a derivative value depends on function values
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Boundary simulating infinite domain

Non-reflecting boundary

Lossy (absorbent) media

Metallic
  object

Perfect
conductor

Signal
source

Figure 2.1: Schematic illustration of composite grid concept. A block pseudospectral (BPS)
method would be run in the curved strip domains (dashed grid) and a high-order �nite
di�erence (FD) method would be run in the overlapping equispaced background grid (solid
grid). Implementation of strips with media interfaces is described in [7].
For this case, we imagine solving Maxwell's equations in a case where a metallic object
(coated with an absorbing medium) is illuminated with a radar source. Around the outer
boundary is wrapped a strip-like domain which, along its middle, features a perfectly non-
re
ecting boundary between the main dielectric (e.g. vacuum) and a strong signal absorber.

The grid densities (especially in the strips around the object and the boundary) would in

general be considerably higher than shown.
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6. Operation counts

7. Comparisons of accuracy and cost-e�ectiveness

8. Test example

9. Summary

The author made signi�cant contributions to sections 4 and 5. Some con-

tributions were made to sections 6, 7, and 8.

2.2 Illustrations of grid staggering

Most linear wave equations of general interest (in any number of space

dimensions) have only a few of all possible spatial derivatives present; these appear

in such a way that spatial grid staggering becomes straightforward. We observe that

the structure of the governing equations turns out to be precisely such that a unique

and internally con
ict-free staggering arrangement is possible, but we are unaware

of any discussion of this issue in the literature. Figures 2.2 a-c illustrate spatial

staggering in three representative cases: 1-D acoustic, 2-D elastic, and 3-D Maxwell's

equations. In each case, we contrast two grid layouts, regular vs. staggered, both

featuring the same density of grid data. The ease of creating staggered layouts for

all major linear wave equations makes the analysis of this chapter widely applicable.

One can also stagger in time, as is done, for example, in the Yee scheme

for time-domain computational electrodynamics [22, 27, 29]. Chapter 3 discusses

higher-order time staggering.

2.3 Algorithm for �nite di�erence weights and examples

Table 2.1 gives examples of the simplest �rst derivative approximations for

each of the four stencil types considered here: explicit and implicit approximations

on regular and staggered grids. Explicit approximations relate one derivative value
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@u
@t = c@v@x
@v
@t = c@u@x

x

u,v u,v u,v u,v

u v u v u v u v

Nonstaggered grid

Staggered grid

where u; v = velocity, pressure

�@u@t = @f
@x +

@g
@y

�@v@t = @g
@x +

@h
@y

@f
@t = (�+ 2�) @u@x + �@v

@y
@g
@t = �@v

@x + �@u
@y

@h
@t = �@u

@x + (�+ 2�) @v@y

u,v
f,g,h

u,v
f,g,h

u,v
f,g,h

u,v
f,g,h

y

x

y

x

Staggered grid

g

f,h u

v g

f,h u

v

g

f,h u

v

f,h u

gv

Nonstaggered grid

where u; v = velocities in x- and y- directions

f; g; h = x-compression, shear, and y-compression

�; �; � = density and elastic constants

Figure 2.2: Illustrations of spatial staggering for some linear wave equations: (a)
One{dimensional acoustic wave equation and (b) Two{dimensional elastic wave
equation.
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@Ex
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�

�
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@y �

@Hy
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�
@Ey

@t = 1
�

�
@Hx
@z � @Hz

@x

�
@Ez
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�

�
@Hy

@x � @Hx
@y

�
@Hx
@t = 1

�

�
@Ey
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�
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�

�
@Ez
@x � @Ex

@z

�
@Hz
@t = 1

�

�
@Ex
@y � @Ey

@x

�

where Ex; Ey; Ez = components of the electric �eld

Hx;Hy;Hz = components of the magnetic �eld

�; � = permeability, permetivity

E
z

H x

Ez

Hy

H x

Hy

HyHy Ez

H x

E
z

H x

Half-integer z-planes

Ex

Ex

EyHz

Hz Ey

Ey

Ey

Ex

Hz

Ex

Hz

Integer z-planes

y

x

Ex Ez

HyHx Hz

Ey Ex Ez

HyHx Hz

Ey

Ex Ez

HyHx H z

E yEx Ez

HyHx Hz

Ey

Integer z-planes

Nonstaggered grid

y

x

Staggered grid

Figure 2.2: (c) Illustration of spatial staggering for three{dimensional Maxwell's
equations
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to a linear combination of function values, while implicit expressions relate a linear

combination of derivative values to a linear combination of function values, thus

requiring one to solve a linear system to �nd the desired derivative values.

As discussed in [11], the weights in any of the stencils we discuss in this

paper can be calculated by the 2-line Mathematica algorithm

t=Pade[x^s*Log[x]^m,{x,1,n,d}];

{CoefficientList[Denominator[t],x],CoefficientList[Numerator[t],x]/h^m}

or in Maple by

t:=pade (x^s*ln(x)^m,x=1,[n,d]):

coeff (expand (denom(t)),x,i) $i=0..d;

coeff (expand (numer(t)),x,i)/h^m $i=0..n;

In both cases, a Pad�e package must be pre-loaded; this is done with the

commands <<Calculus`Pade` or with (numapprox): respectively. In these lines of

code, m denotes which order of derivative we wish to approximate (this will be one in

all cases considered in this paper but can, in general, be any nonnegative integer; the

case m=0 will generate interpolation formulae). The remaining three input parameters

s,d, and n describe the shape of the stencil, as illustrated in Figure 2.3 (s may be

any real number; d and n must be non-negative integers).

For the �rst derivative (i.e. m = 1) and with the stencil shown in Figure 2.3,

the Mathematica output becomes

��
9

80
;
31

40
;
9

80

�
;

�
� 17

240h
;� 63

80h
;
63

80h
;
17

240h

��
: (2.1)

(cf. the case n = 2 listed in Table 2.6).

In Appendix A we explain why the above Pad�e algorithm works.

Hereafter in this chapter, we consider only �rst derivative approximations,

and we use m;n; and k to denote stencil entries as illustrated in Figure 2.4. Note
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that d = 2m+ 1, while n = 2n+ 1 for nonstaggered grids and n = 2n for staggered

grids.

In addition, note that we consider only centered FD approximations. In

general, centered schemes have better accuracy properties that noncentered schemes;

one usually only considers noncentered schemes when considering boundaries.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

d

n

s

entries for

entries for

f

f

(m)

Figure 2.3: Schematic illustration of the notation used in the Pad�e weight algorithm
for a staggered case; here, s = 1

2 , d = 2, and n = 3. (All distances s, d, n are in
units of the unit step length h.)
The notation in this and subsequent illustrations of stencils follows the convention
(as was adopted for example in [10]):

unknown / known

g
�
� w derivative entry

�
� function entry

The symbols are un�lled or �lled depending on whether the corresponding derivative
or function value would be unknown (i.e. to be solved for) or known in the anticipated
application of the stencil.



15

(a) k = �3 � 2 � 1 0 1 2 3

f 0 � entries amn;k

f � entries bmn;k

d d d �

�

m = number of derivative entries used
on each side of centerline;
here, m = 1; k = �m; � � � ; 0; � � � ; m:

n = number of function entries used
on each side of centerline;
here, n = 3; k = �n; � � � ; 0; � � � ; n:

(b) k = �3 � 2 � 1 0 1 2 3

f 0 � entries amn;k

f � entries bmn;k

d d d �

�

m = same as above

n = number of entries on each side of

centerline; here, n = 3;

k = �n + 1
2
; � � � ;� 1

2
; 1
2
; � � � ; n� 1

2
:

Figure 2.4: Notation used to index entries in nonstaggered and staggered spatial
stencils: (a) Notation for nonstaggered grid, (b) Notation for staggered grid.
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2.4 Tables of some weights, including formulae for weights and for

limits of in�nite order

Tables 2.2-2.7 provide numerical values and closed-form expressions (in

terms of n and k) for the coeÆcient weights of �nite di�erence schemes for the

cases of main interest. From these follow the quoted limits for k �xed and n! 1.

These closed-form expressions and limits were found primarily by the author with

some assistance from Bengt Fornberg. We note the use of Wallis' product in this

limiting procedure:

lim
k!1

k

�
(2k � 1)!!

(2k)!!

�2
=

1

2

1Y
j=i

�
1� 1

(2j)2

�
=

1

�
(2.2)

(See [12], for example.)

The limiting weights can also be derived from a more general integral formu-

lation, which is given in Table 2.8. The integrals given in this table can be evaluated

explicitly. The regular grid expressions in Table 2.8 were derived by Bengt Fornberg

while the staggered grid expressions were derived by the author. Appendix B gives

a brief argument leading to the limit expressions in Table 2.8.

The literature on both regular and staggered grid explicit �nite di�erence

schemes is extensive. Some schemes have been designed with the goal of enhancing

the accuracy for certain frequencies rather than maximizing the formal order of accu-

racy [16, 20, 24]. Implicit (also known as compact in the literature) regular schemes

have been derived and studied on numerous occasions, e.g. [1, 4, 14, 15, 23, 25].

Kopal [21] presents tables which allow easy calculation of weights in numerous

schemes which include cases that combine staggering with implicitness (also known

in the literature as compactness); however, his coeÆcients are presented in terms

of di�erence operators whereas we give explicit closed-form expressions for the co-

eÆcients and also consider limiting cases (in Tables 2.2-2.7). (In Appendix C, we

demonstrate how to convert from Kopal's coeÆcients to our coeÆcients.) However,
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Table 2.2: Weights for explicit, regular grid FD formulae (order of accuracy = 2n).

weights b0n;k for f

n k = �5 �4 �3 �2 �1 0 1 2 3 4 5

1 � 1
2

0 1
2

2 1
12

� 2
3

0 2
3

� 1
12

3 � 1
60

3
20

� 3
4

0 3
4

� 3
20

1
60

4 1
280

� 4
105

1
5

� 4
5

0 4
5

� 1
5

4
105

� 1
280

5 � 1
1260

5
504

� 5
84

5
21

� 5
6

0 5
6

� 5
21

5
84

� 5
504

1
1260

For general n; k :

a0n;0 = 1 for all n b0n;k =

8>><
>>:

0 k = 0

(�1)k+1

k
(n!)2

(n+k)!(n�k)! k 6= 0

Limit as n!1 :

a01;0 = 1 b01;k =

8>><
>>:

0 k = 0

(�1)k+1

k
k 6= 0
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Table 2.3: Weights for implicit 3-diagonal, regular grid FD formulae (order of accu-
racy = 2n+ 2).

weights a1n;k weights b1n;k

for f 0 for f

n k = �1 0 1 �5 �4 �3 �2 �1 0 1 2 3 4 5

1 1
6

2
3

1
6

� 1
2

0 1
2

2 1
5

3
5

1
5

� 1
60

� 7
15

0 7
15

1
60

3 3
14

4
7

3
14

1
840

� 1
35

� 25
56

0 25
56

1
35

� 1
840

4 2
9

5
9

2
9

� 1
7560

1
378

� 1
27

� 13
30

0 13
30

1
27

� 1
378

1
7560

5 5
22

6
11

5
22

1
55440

� 1
2772

5
1232

� 10
231

� 14
33

0 14
33

10
231

� 5
1232

1
2772

� 1
55440

For general n; k :

a1n;k =

8>><
>>:

n+1
2n+1

k = 0

n
2(2n+1)

k = �1

b1n;k =

8>>>>><
>>>>>:

0 k = 0

(�1)k+1 (3n+1)(n+2)
4(2n+1)(n+1)

k = �1

(�1)k
(k+1)(k)(k�1)

(n+1)
(2n+1)

(n!)2

(n�k)!(n+k)! jkj � 2

Limit as n!1 :

a11;k =

8>><
>>:

1
2

k = 0

1
4

k = �1

b11;k =

8>>>>><
>>>>>:

0 k = 0

3
8
sign(k) k = �1

1
2

(�1)k
(k�1)(k)(k+1)

jkj � 2
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Table 2.4: Weights for implicit 5-diagonal, regular grid FD formulae (order of accu-
racy = 2n+ 4).

weights a2n;k weights b2n;k

for f 0 for f

n k = �2 �1 0 1 2 �4 �3 �2 �1 0 1 2 3 4

1 � 1
180

17
90

19
30

17
90

� 1
180

� 1
2

0 1
2

2 1
70

8
35

18
35

8
35

1
70

� 5
84

� 8
21

0 8
21

5
84

3 1
42

5
21

10
21

5
21

1
42

� 1
1260

� 101
1260

� 85
252

0 85
252

101
1260

1
1260

4 1
33

8
33

5
11

8
33

1
33

1
27720

� 2
1155

� 91
990

� 14
45

0 14
45

91
990

2
1155

� 1
27720

For general n; k :

a2n;k =

8>>>>><
>>>>>:

3
2

(n+1)(n+2)
(2n+1)(2n+3)

k = 0

n(n+2)
(2n+1)(2n+3)

k = �1
n(n�1)

4(2n+1)(2n+3)
k = �2

b2n;k =

8>>>>>>>>><
>>>>>>>>>:

0 k = 0

(�1)k+1(n+2)(n+3)(5n+2)
6(n+1)(2n+1)(2n+3)

k = �1
(�1)k (n+3)(25n3+23n2�22n�8)

48(n+1)(n+2)(2n+1)(2n+3)
k = �2

(�1)k

(k�2)(k�1)(k)(k+1)(k+2)
6(n+1)(n+2)
(2n+1)(2n+3)

(n!)2

(n�k)!(n+k)!
jkj > 2

Limit as n!1 :

a2
1;k =

8>>>>><
>>>>>:

3
8

k = 0

1
4

k = �1
1
16

k = �2

b2
1;k =

8>>>>>>>>><
>>>>>>>>>:

0 k = 0

5
24

sign(k) k = �1
25
192

sign(k) k = �2
3
2

(�1)k+1

(k�2)(k�1)(k)(k+1)(k+2)
jkj > 2

Table 2.5: Weights for explicit, staggered grid FD formulae (order of accuracy =
2n).

weights b0n;k for f

n k = � 9
2

� 7
2

� 5
2

� 3
2

� 1
2

1
2

3
2

5
2

7
2

9
2

1 �1 1

2 1
24

� 9
8

9
8

� 1
24

3 � 3
640

25
384

� 75
64

75
64

� 25
384

3
640

4 5
7168

� 49
5120

245
3072

� 1225
1024

1225
1024

� 245
3072

49
5120

� 5
7168

5 � 35
294912

405
229376

� 567
40960

735
8192

� 19845
16384

19845
16384

� 735
8192

567
40960

� 405
229376

35
294912

For general n; k :

a0n;0 = 1 for all n b0n;k = (�1)k�1=2

2k2
[(2n�1)!!]2

(2n�1�2k)!!(2n�1+2k)!!

Limit as n!1 :

a01;0 = 1 b01;k = (�1)k�1=2

�k2
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Table 2.6: Weights for implicit 3-diagonal, staggered grid FD formulae (order of
accuracy = 2n+ 2).

weights a1n;k for f 0 weights b1n;k for f

n k = �1 0 1 � 9
2

� 7
2

� 5
2

� 3
2

� 1
2

1
2

3
2

5
2

7
2

9
2

1 1
24

11
12

1
24

�1 1

2 9
80

31
40

9
80

� 17
240

� 63
80

63
80

17
240

3 25
168

59
84

25
168

61
40320

� 925
8064

� 2675
4032

2675
4032

925
8064

� 61
40320

4 49
288

95
144

49
288

� 43
430080

343
110592

� 78841
552960

� 64925
110592

64925
110592

78841
552960

� 343
110592

43
430080

5 81
440

139
220

81
440

221
22708224

� 15957
63078400

70821
15769600

� 364119
2252800

� 96579
180224

96579
180224

364119
2252800

� 70821
15769600

15957
63078400

� 221
22708224

For general n; k :

a1n;k =

8>><
>>:

4n2+8n�1
4n(2n+1)

k = 0

(2n�1)2

8n(2n+1)
k = �1

b1n;k =
(�1)k+1=2[(2n�1)!!]2

8n(2n+1)(2n�1�2k)!!(2n�1+2k)!!
(3k2�1)(4n2�1)+8n(k2�1)

[(k�1)(k)(k+1)]2

Limit as n!1 :

a1
1;k =

8>><
>>:

1
2
k = 0

1
4
k = �1

b1
1;k =

(�1)k+1=2

2�
3k2�1

[(k�1)(k)(k+1)]2
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Table 2.7: Weights for implicit 5-diagonal, staggered grid FD formulae (order of
accuracy = 2n+ 4).

weights a2n;k for f 0 weights b2n;k for f

n k = 0 �1 �2 � 5
2

� 3
2

� 1
2

1
2

3
2

5
2

1 863
960

77
1440

� 17
5760

�1 1

2 3667
5440

3057
19040

183
76160

� 367
2856

� 585
952

585
952

367
2856

3 288529
491904

48425
245952

1075
109312

� 69049
14757120

� 505175
2951424

� 683425
1475712

683425
1475712

505175
2951424

69049
14757120

4 1461701
2724480

879403
4086720

54145
3269376

� 19618669
1961625600

� 124703971
653875200

� 2698675
7133184

2698675
7133184

124703971
653875200

19618669
1961625600

For general n; k :

a2n;k =

8>>>>><
>>>>>:

576n6+1920n5+1488n4�4288n3�3156n2+952n�81
8(2n)(2n+1)(2n+2)(2n+3)(12n2�16n+1)

k = 0

(2n�1)2(48n4+128n3�120n2�160n+27)

4(2n)(2n+1)(2n+2)(2n+3)(12n2�16n+1)
k = �1

(2n�1)2(2n�3)2(12n2+8n�3)
16(2n)(2n+1)(2n+2)(2n+3)(12n2�16n+1)

k = �2

b2n;k =
(�1)k�1=2[(2n�1)!!]2

4(2n�1�2k)!!(2n�1+2k)!!
P (n;k)

(2n)(2n+1)(2n+2)(2n+3)(12n2�16n+1)[(k�2)(k�1)(k)(k+1)(k+2)]2

where P (n; k) = (576n6 � 81)(5k4 � 15k2 + 4) + 384n5(15k4 � 59k2 + 20) � 48n4(101k4 � 175k2 � 124)

�64n3(169k4 � 653k2 + 268) � 12n2(35k4 � 745k2 + 1052) + 8n(293k4 � 1129k2 + 476)

Limit as n!1 :

a21;k =

8>>>>><
>>>>>:

3
8
k = 0

1
4
k = �1

1
16

k = �2

b21;k =
(�1)k�1=2

2�
3(4�15k2+5k4)

[(k�2)(k�1)(k)(k+1)(k+2)]2
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Table 2.8: Limits of weights as n ! 1 for schemes with 2m + 1 diagonals, m =
0; 1; 2; � � � . (See Appendix B for a brief derivation of the integral forms.)

Limit Integral form Explicit form

[Regular grid (k integer)]

am1;k = 1
�

R �
0 cos (kx)

�
cos
�
x
2

��2m
dx =

8>><
>>:

1
22m

(2m)!
(m�k)!(m+k)! jkj � m

0 jkj > m

bm1;k = 1
�

R �
0 x sin (kx)

�
cos
�
x
2

��2m
dx =

8>>>>>><
>>>>>>:

0 k = 0

(sign k)(2m)!
Pjkj

j=1�jkj
1

j+m

22m(m�k)!(m+k)! 0 < jkj � m

(�1)k+m+1(2m)!
22m

Qm
j=�m(k+j)

jkj > m

[Staggered grid (k half � integer)]

am1;k = 1
�

R �
0 cos (kx)

�
cos
�
x
2

��2m
dx =

8>><
>>:

1
22m

(2m)!
�(m�k+1)�(m+k+1) jkj � m

0 jkj > m

bm1;k = 1
�

R �
0 x sin (kx)

�
cos
�
x
2

��2m
dx=

(sign k)(2m)!
Pjkj

j=1�jkj
1

j+m

22m�(m�k+1)�(m+k+1)
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we are not aware of any references which analyze such combined schemes.

2.5 Equivalence between implicit and explicit formulae in the case

of limiting order

An explicit �nite di�erence (FD) stencil directly expresses how the ap-

proximation of a derivative is in
uenced by changes in function values at di�erent

locations. For regular grids, as the order of accuracy increases (i.e. n ! 1), the

weights approach

b01;k =
(�1)k
k + 1

(k 6= 0) (2.3)

(cf. Table 2.2, also [10], pp. 20-22). The derivative approximation therefore depends

signi�cantly on function values quite far away (in contrast to the exact derivative

being a strictly local property of a function).

For the tridiagonal implicit stencil, the decay of the weights is much faster:

b11;k =
1

2

(�1)k
(k � 1)k(k + 1)

(jkj � 2) (2.4)

(cf. Table 2.3). Super�cially, it might appear that these approximations remain more

`local.' However, to actually obtain derivative approximations, we need to solve a

tridiagonal system. The equivalent explicit scheme (obtained through multiplication

by the inverse of this in�nite tridiagonal matrix) is as globally coupled as the original

explicit scheme. The same will also hold true if we have 5 or more diagonals; in fact,

in the limit of increasing order, these schemes all become identical, as demonstrated

later in this section through numerical simulations.

In the staggered case, all implicit schemes have similarly the equivalent
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explicit scheme limit of

b1;k =
(�1)(k�1=2)

�k2
: (2.5)

(A derivation of the periodic staggered pseudospectral di�erentiation matrix from

this limit can be found in Appendix D.)

In all cases|regular and staggered grids of any order|equivalent explicit

schemes can be found as illustrated below:
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* * *

Equivalent

Symmetric banded Toeplitz matrix Weights explicit

bn;k weights

(2.6)

The exact inverse of an (in�nite-dimensional) symmetric banded Toeplitz

matrix is also symmetric and Toeplitz with entries dk along diagonal k:

dk =
1

�

Z �

0

cos(kx)

amn;0 + 2
Pm

j=1 a
m
n;j cos(jx)

dx (2.7)

for m and n �xed. (Derivation of this is given in Appendix E.)

In the regular grid tridiagonal case (m = 1), the Toeplitz matrix has coef-
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�cients

a1n;k =

8><
>:

n+1
2n+1 ; k = 0

n
2(2n+1) ; k = �1:

(2.8)

After substituting this into (2.7), we simplify to �nd that, for the nonstaggered

m = 1 case,

dk =
p
2n+ 1

�
�1 + 1

n

�p
2n+ 1� 1

��jkj
: (2.9)

In the staggered grid tridiagonal case (m = 1), the Toeplitz matrix has

coeÆcients

a1n;k =

8><
>:

4n2+8n�1
4n(2n+1) ; k = 0

(2n�1)2

8n(2n+1) ; k = �1:
(2.10)

After substituting these into (2.7), we simplify to �nd that, in the staggered m = 1

case,

dk =

r
2n(2n+ 1)

6n� 1

8<
:
� �n2 + 2n� 1

4

�
+
q
n
�
n+ 1

2

�
(6n� 1)�

n� 1
2

�2
9=
;
jkj

: (2.11)

We note that in both (2.9) and (2.11), the quantities inside the braces are bounded

between �1 and 1. Thus, the inverse matrix is well-de�ned because elements decay

away from the main diagonal. We note that for m > 1, it is much more diÆcult to

evaluate the integral in (2.7), so we do not give explicit expressions for dk for m > 1.

The author has numerically computed equivalent weights using (2.6), the in-

verse matrix given by (2.7), and the weights amn;k and b
m
n;k given in Tables 2.3, 2.4, 2.6,

and 2.7. Figure 2.5 illustrates graphically how the equivalent weights compare for ex-

plicit, 3-diagonal, and 5-diagonal schemes, both nonstaggered and staggered. These



26

-1/4

1/3

-1/2

11

-1

Value

weight

k

number)

of 

point
(Grid

2 4

3

1

(a)

4/(25   )

4/

1

Value

weight
of 

7/2

5/2-4/(9   )

1/2 3/2

-4/(49   )

-1/2

π

π

π
π

point
(Grid

k

number)

(b)

  =2

  =1

  =0
(explicit)

  =1
(3-diagonal) (5-diagonal)

  =2

1

0.5

  =3

  =10
  =3
  =2

  =1

  =1

  =10

  =2
  =3

  =10n

n

n

n n
n

n

m m

n

m

n
n
n

n

1 

Value of
equivalent

weight

(c) Limit value as n!1

Figure 2.5: (a) Equivalent weights for the nonstaggered grid case. (b) Equivalent
weights for the staggered grid case. (c) Legend (for the k = 1 case of Figure 2.5(a)).
Note that for explicit methods, weights are 0 for n < k.
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�gures demonstrate that all nonstaggered implicit schemes have the same limiting

equivalent weights, as n ! 1, as the explicit nonstaggered scheme, and that all

staggered implicit schemes have the same limiting equivalent weights, as n ! 1,

as the explicit staggered scheme. Thus, there is little advantage in using implicit

schemes from the standpoint of localization; grid staggering is seen to have more

e�ect in this respect. We note that these limits (as n ! 1) for both regular and

staggered grids, if implemented on periodic data, become identical to the respective

periodic pseudospectral methods [9, 10].

2.6 Operation counts

Regarding the number of arithmetic operations required to obtain the

derivative at a grid point, we note:

� There is no need to make any distinction between regular and staggered

grids; their operation counts are identical (when expressed in n and k).

� For the implicit cases, the LU factorization of the �nite di�erence coeÆcient

matrix can be stored. The entries in these matrices do not depend on the

system size; i.e., one copy suÆces even if the domain geometry is such that

we have to solve systems of di�erent sizes.

One example of operation count suÆces to illustrate the general counting

process. Consider the 3-diagonal regular grid case with n = 1, which has weights

�
1

6

2

3

1

6

�
f 0 =

�
�1
2

0
1

2

�
f: (2.12)
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After writing this in the form [1 4 1] f 0 = [�3 0 3] (to get ones at the edge
of the f 0 stencil), the LU factorization takes the form

2
6666664

�1
1 �2

1
. . .
. . .

. . .

1 �s

3
7777775

2
6666664

1 �1
1 �2

1
. . .
. . . �s�1

1

3
7777775

2
6666664 f 0

3
7777775
=

2
6666664

3
�3 3

�3 . . .
. . . 3

�3

3
7777775

2
6666664 f

3
7777775

The cost for each entry becomes (with \-",\�" and \/" denoting the type

of operation):

RHS : 1�; 1�
U back substitution : 1�; 1�
L back substitution : 1�; 1=:

By storing 1
�i

instead of �i, the divide becomes also a multiply. The total operation

count becomes 6 in this case, made up of equally many subtractions and multiplica-

tions. This case is seen in the 3-diagonal n = 1 entry in Table 2.9. The other entries

of this table are obtained similarly. Comparisons are given in the next section.

2.7 Comparison of accuracies and cost-e�ectiveness

The leading error coeÆcient in a spatial �nite di�erence formula does not

necessarily give a very good impression of the formula's accuracy or of its utility.

In particular, for higher-order methods, it may not dominate further terms. Also,

it o�ers little help in comparing methods of di�erent formal orders. Nevertheless,

it may be of interest to note from Tables 2.10 and 2.11 that staggering is always

bene�cial. Table 2.10 gives the coeÆcients of leading error terms for various �rst

derivative approximations, while Table 2.11 gives the approximate ratio of leading

error coeÆcients of staggered to nonstaggered for �rst derivative approximations.

The advantage of staggering is observed to increase with order but decreases with

the number of diagonals used.
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Table 2.9: Operation count to calculate f 0 at one grid point when using di�erent
schemes. (Note: there is no di�erence between regular and staggered grids.)

n = 1 2 3 4 � � � General n

Explicit 2 5 8 11 � � � 3n� 1

3� diagonal 6 9 12 15 � � � 3n+ 3

5� diagonal 10 13 16 19 � � � 3n+ 7
...

...
...

...
...

. . .
...

k � diagonal 2k 2k + 3 2k + 6 2k + 9 � � � 2k + 3n� 3

Table 2.10: CoeÆcients of leading error terms for di�erent �rst derivative approx-
imations (Expressions for general p found by the author). n is the row number in
Tables 2.2 - 2.7.

Order of Order p

accuracy p = 2 4 6 8 p in terms

Error form h2f(3)(x) h4f(5)(x) h6f(7)(x) h8f(9)(x) hpf(p+1)(x) of n

Regular

Explicit 1
6

� 1
30

1
140

� 1
630

(�1)p=2+1[( p2 )!]
2

(p+1)!
2n

3� diag: � 1
280

1
2100

� 1
17640

(�1)p=2�1[( p2�1)!]
2( p2 )

(p+1)!(p�1) 2n+ 2

5� diag: 1
1512

� 1
44100

(�1)p=2�16[( p2�2)!]
2( p2�1)(

p
2 )

(p+1)!(p�3)(p�1) 2n+ 4

Staggered

Explicit 1
24

� 3
640

5
7168

� 35
294912

(�1)p=2+1(p)!

22p[( p2 )!]
2
(p+1)

2n

3� diag: � 17
5760

61
358400

� 215
14450688

(�1)p=2�1(p�3)(3p2�9p+1)

22p�2( p2�1)!(
p
2 )!(p�1)2(p+1)

2n+ 2

5� diag: 367
967680

� 69049
6141542400

(�1)p=2�1(p�5)!R(p)
22p�4( p2 )!(

p
2
+1)!(p�3)2(p�1)2(p+1)

2n+ 4

where R(p) =
(45p6�900p5+6897p4�25304p3+44631p2�31396p+2187)

(3p2�32p+81)
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Table 2.11: Approximate ratio of leading error coeÆcients : staggered to nonstag-
gered

Accuracy order

p = 2 4 6 8 10 12 14 16

Explicit 0.2500 0.1406 0.0977 0.0748 0.0606 0.0509 0.0439 0.0386

3-diag. 0.5313 0.3574 0.2625 0.2065 0.1701 0.1445 0.1256

5-diag. 0.5734 0.4958 0.3915 0.3172 0.2656 0.2281

7-diag. 0.5914 0.5356 0.4831 0.4083 0.3483

9-diag. 0.6014 0.5575 0.5165 0.4766

11-diag. 0.6078 0.5715 0.5375

13-diag. 0.6122 0.5813

15-diag. 0.6155
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A frequently used alternative error comparison approach (e.g. [8, 23]) for

wave equation analysis consists of inspecting how the di�erent derivative approxima-

tions treat a pure Fourier mode ei!x on a grid over [�1; 1] (for example), with grid

spacing h. The modes that can be represented on the grid will satisfy �� < !h � �;

higher modes will appear equivalent to a lower one on the grid due to aliasing. The

exact derivative of ei!x is

d

dx

�
e
i!x
�
= i!e

i!x = !
�
ie

i!x
�

(2.13)

We wish to compare how well various FD approximations do in approximating this

exact factor !.

Applying to ei!x the explicit, regular grid, second order FD approximation

for the �rst derivative gives

1

h

�
1

2
e
i!(x+h) � 1

2
e
i!(x�h)

�
=

sin (!h)

h

�
ie

i!x
�

(2.14)

These factors (! and sin!h
h ) are seen as the diagonal straight line and the bottom

curve respectively in the top left subplot of Figure 2.6. The sin(!h)
h - curve is seen

to be approximately correct only for a small fraction of the Fourier modes the grid

can represent; using it is extremely wasteful in terms of computational eÆciency.

As the order of accuracy p increases, the coverage over ! = [0; �] clearly improves.

The other �ve subplots in Figure 2.6 show how coverage is gained both by adding

diagonals (using increasingly more implicit approximations) and by using staggering.

The fact that the curves for staggered approximations are not forced to be zero at

! = � (but instead have zero slope there) allows them to provide better coverage

across the spectrum.

A major advantage of this spectral comparison method (as opposed to

looking at error coeÆcients) is that we can directly compare methods of di�erent

orders of accuracy. To better see the di�erences between the methods, we show in

Figure 2.7 how the di�erent curves in Figure 2.6 deviate from the exact result. In this
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Figure 2.6: Fourier multiplication factors for di�erent methods, displayed against !.
The curves are labeled according to the order of accuracy p of the methods.
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�gure, the curves are not labeled according to their accuracy, but according to the

computational cost per grid point, as displayed in Table 2.9. We note that for either

type of grid, there is a signi�cant improvement in going from explicit to 3-diagonal

schemes, but to proceed further to 5-diagonal does not improve eÆciency much, if

at all. Staggering is again seen to clearly be advantageous in all cases. The three

schemes that are highlighted as particularly e�ective in Figure 2.7 are all staggered,

and have the stencils
e e e e e e e e e

Order 2 Order 6 Order 10

where \ " denotes a known function value, and \ d" represents an unknown

derivative value entry.

2.8 Test problem

The work in this section was done by Bengt Fornberg. As a simple test

problem, we consider

ut + ux = 0; (2.15)

periodic over [�1; 1], with initial condition

u(x; 0) =

8>>>><
>>>>:

�
1 + cos

�
�x
0:15

��2
; jxj � 0:15

0; jxj > 0:15

(2.16)

This equation is discretized in space and its solution advanced analytically

in time (thus the plots in Figures 2.8{2.11 show only spatial errors). Figure 2.8

shows the numerical and exact solutions for a regular grid using di�erent methods

at time t = 100, after the pulse has traversed the domain 50 times. The number

shown in the bottom left of each subplot tells the number of spatial grid points used;
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0.05. All curves are labeled according to the operation count per grid point, as given
in Table 2.9. The boxed numbers mark schemes that are particularly advantageous
in terms of operation count in their respective accuracy ranges.
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this number was selected so that, based on the operation counts in Table 2.9, all

cases would be equally costly if run in 1-D. Figure 2.9 shows the equivalent data for

staggered grids. As expected from our analysis, staggering is advantageous in all the

cases, but less so for the most implicit scheme.

Higher dimensions and longer time integration more strongly favor higher

order methods over lower order ones. Figure 2.10 shows the same test run to time

t = 2000 using grid sizes (in each spatial direction) which would provide equal cost

in 2-D.

In Figure 2.11, we re�ne the explicit n = 1 scheme successively. The addi-

tional number within each subplot shows the relative computer time required (with

"1" corresponding to the cost of each of the cases in Figure 2.10). It is clear that to

achieve acceptable (say, about 1%) accuracy requires exorbitant computational costs

in both time and memory. The bottom left subplot in Figure 2.11 shows comparable

accuracy to the bottom right one in Figure 2.9 | at about 4,000 times larger cost

(in 3-D, this factor increases to about 260,000). The staggered second order scheme

in this comparison corresponds to the spatial discretization of the Yee-scheme, which

was pioneering work when �rst proposed for time-dependent computational electro-

magnetics (Maxwell's equations) in 1966 [29]. It has since enjoyed a long-lasting

popularity (e.g. [22, 27]) in spite of its low order of accuracy.

2.9 Conclusions

Combining

� high orders of accuracy (i.e. wider stencils),

� implicitness, and

� staggering

leads to a class of computationally very cost-e�ective �nite di�erence schemes. As

their orders of accuracy increase, these schemes approach in accuracy the well-known
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Figure 2.8: Regular grid solutions at t = 100 using di�erent spatial approximations.
The grid sizes (shown in the bottom left corner of each subplot) were selected to
make each case equally costly in computer time (assuming 1-D).
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Figure 2.9: Same as Figure 2.8, but using staggered approximations for the spatial
derivative. The reductions in the amplitudes of the dispersive wave trains (compared
to the regular grid cases in Figure 2.8) are particularly noticeable if one compares the
waves trains as they leave the left edge of the domains and (because of periodicity)
reappear in the right half of the subplots.



38

            

Figure 2.10: Solutions for staggered grid at t = 2000 with grid sizes selected to make
computations equally time-consuming in 2-D. (The memory requirements scale with
the square of the numbers given in the bottom left corners.)
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Figure 2.11: Solutions at t = 2000 for the staggered explicit n = 1 scheme for
increasingly �ne grids. The numbers in the bottom left corners denote (as in Fig-
ures 2.8-2.10) the number of grid points across the period. The numbers in the
bottom right corners give the relative cost in both computer time and memory, if
implemented in 2-D, compared to the unit (1) cost of all the cases in Figure 2.10.
The top left subplot of Figures 2.10 and 2.11 are identical; we see here how costly it
is to achieve high accuracy by re�ning the grid using this scheme.
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spectral accuracy of periodic, explicit pseudospectral schemes. The schemes dis-

cussed in this chapter are de�ned on equispaced Cartesian grids. When combined

with the idea of overlapping subdomains, the relatively narrow stencil widths make

the schemes well-suited for computations in media with curvilinear material inter-

faces. The schemes can be applied to most linear wave-type PDEs of broad interest.

In the particular application of time-domain computational electromagnetics (also

known as FDTD), the classical Yee scheme uses only the last of the three high-

lighted concepts. We �nd that major improvements in accuracy and eÆciency can

be achieved by also incorporating the other two ideas of implicitness and staggering.



Chapter 3

Staggered Time Integrators for Wave Equations

In this chapter, we consider variations of the Adams{Bashforth, backwards

di�erentiation, and Runge{Kutta families of time integrators to solve systems of

linear wave equations on uniform, time-staggered grids. These methods are found

to have smaller local truncation errors and to allow larger stable time steps than

traditional nonstaggered versions of equivalent orders. We investigate the accuracy

and stability of these methods analytically, experimentally, and through the use of a

novel root portrait technique. In addition, we address several theoretical questions

regarding staggered time integrators.

3.1 Introduction

When wave equations are posed as �rst order systems and discretized in

space to yield a system of ordinary di�erential equations (ODEs), the linearization of

the resulting system has a purely imaginary spectrum. This corresponds to the fact

that only propagation takes place. Many classical methods for ODEs have stability

regions that include an interval of the form [�iSI ; iSI ] on the imaginary axis. We

call the largest such value of SI the imaginary stability boundary (ISB) of the

ODE integrator. In the context of a semidiscrete wave equation, two features are

desired for an ODE integrator:

(1) small local truncation error and
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(2) large imaginary stability boundary (ISB).

These two properties are typically in opposition to one another.

In Chapter 2 and [9] it has been shown that the use of staggered or inter-

laced grids in space can increase the accuracy of �nite di�erence and pseudospectral

di�erentiation methods when used for linear wave equations. Similarly, the unknown

variables of linear wave equations (and systems of such equations) can be staggered

in time to yield bene�ts in both accuracy and stability. In this chapter we introduce

novel families of multistep and multistage staggered ODE integrators. We �nd that

for multistep methods of the same order of accuracy, staggering in time usually im-

proves accuracy by a factor of about 9 and increases the ISB by a factor of 2.4{7.4,

with the factor growing as order increases. We also present a fourth order multi-

stage method which, compared to classical fourth order Runge{Kutta, has an error

constant smaller by a factor of 16 and an ISB larger by a factor of about two.

Typically the computational cost of using an implicit method is justi�ed

only in the presence of sti�ness (not an issue for linear wave equations) or when there

is a relatively small number of equations in the system. We envision our methods

being used to solve systems with a very large number of equations, possibly in the

millions (as is the case when 2-D or 3-D wave equations are solved with a method of

lines approach). For such situations, it is impractical to generate (and store) an LU

decomposition. We thus consider only explicit methods in this analysis.

Although we focus our discussion on linear wave equations, linearity is not

a requirement in any of our proposed schemes. Additionally, our time integrators are

designed to solve �rst order systems. Although systems of wave equations can often

be rewritten as second order systems, �rst order formulations are generally preferred

in the literature (e.g. Maxwell's equations), partly due to easier implementation of

boundary conditions. (It is known that staggered grids are better for approximating

odd-order derivatives and nonstaggered grids are better for approximating even-order

derivatives [9].)
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The rest of this chapter is organized as follows:

2. Illustrations of grid staggering in time for linear wave equations

3. Preliminaries

4. Staggered Adams-Bashforth and backwards di�erentation methods

5. Staggered free parameter methods

6. Theoretical considerations

7. Staggered predictor-corrector methods

8. Staggered Runge{Kutta methods

9. Root portraits

10. Numerical experiments

11. Conclusions

The author made signi�cant contributions to sections 4, 5, 6, 7, 8, and 10.

Some contributions were made to section 2.

Because we use a number of acronyms which may be unfamiliar to the

reader, a glossary of these abbreviations is included in Section 1.2.

3.2 Illustrations of grid staggering for linear wave equations

(Note: this section is an extension of Section 2.2. The time staggering grids

in this section were created partly by the author.)

Staggered grid techniques apply to linear hyperbolic equations which have

been written as �rst order systems. The variables in the system are staggered in

such a way that the locations of values and their derivatives are interlaced.

We give three examples; other linear wave equations can be treated simi-

larly. Figure 3.1 gives four di�erent ways to lay out the grid of unknowns u and v
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for the one-dimensional acoustic wave equation

@u

@t
= c

@v

@x
@v

@t
= c

@u

@x
:

(3.1)

One can choose to utilize time staggering, space staggering, both, or neither.

In every case the space-time density of data is exactly the same. Note that if one

wants to incorporate staggering in time, the variables u and v must exist on interlaced

time intervals (e.g., u exists on integer time levels, while v exists on half-integer time

levels).

Figure 3.2 shows nonstaggered and staggered space grids for the two-dimensional

elastic wave equation

�
@u

@t
=

@f

@x
+
@g

@y

�
@v

@t
=

@g

@x
+
@h

@y

@f

@t
= (�+ 2�)

@u

@x
+ �

@v

@y

@g

@t
= �

@v

@x
+ �

@u

@y

@h

@t
= �

@u

@x
+ (�+ 2�)

@v

@y
:

(3.2)

The spatial staggering layout given in Figure 3.2 is uniquely determined.

For example, the �rst equation requires that u be represented halfway between values

of f in the x-direction and halfway between values of g in the y-direction. If @g
@x also

appeared in the �rst equation, it would not be possible to stagger spatially. We

observe that for a large number of linear wave equations (e.g. Maxwell's equations

in any number of dimensions), the structure of the governing equations turns out to

be precisely such that a unique and internally con
ict-free staggering arrangement

is possible, but we are unaware of any discussion of this in the literature. If one

also wants to incorporate time staggering for this equation (with or without spatial
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staggering), we must again split the variables into two groups that exist on interlaced

time intervals (e.g. u and v on integer time levels and f; g; and h on half-integer

time levels). An illustration of this arrangement is given in Figure 3.3.

As a �nal example, to stagger the 3-D Maxwell's equations given in Fig-

ure 2.2(c) in time, one would, for example, represent the electric �eld components

Ex, Ey, and Ez on integer time-levels and the magnetic �eld components Hx, Hy,

and Hz on interlacing half-integer time-levels. This is possible whether or not one

staggers in space.
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Figure 3.1: Representative samples of various spatial/time grid layouts for the one-
dimensional wave equation (3.1)
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wave equation (3.2)
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3.3 Preliminaries

3.3.1 De�nitions

An m-step linear multistep method for solving the ODE

dy

dt
= f(t; y(t)) (3.3)

is a di�erence equation of the form

�myn+m + �m�1yn+m�1 + : : : + �0yn = k(�mfn+m + : : : + �0fn) (3.4)

where k is the step size, �i and �i are real parameters, ti = t0 + ik, yi = y(ti),

and fi = f(ti; yi). The coeÆcients �i and �i can be generated by using a two-line

Mathematica or Maple algorithm based on Pad�e expansions (see [11] or Section 2.4).

Another way of representing the above general multistep method is through the use

of generating polynomials

�(z) = �mz
m + �m�1z

m�1 + : : :+ �0

�(z) = �mz
m + �m�1z

m�1 + : : :+ �0:

(3.5)

We consider only explicit methods, in which case �m = 0. The local truncation error

of a multistep method of order p is usually de�ned as

L(y; t; k) = �(Z)y(t)� k�(Z)y0(t) = Cp+1k
p+1y(p+1)(t) +O(kp+2); (3.6)

where Z is the forward shift operator; this results from a simple Taylor expansion.

The constant Cp+1 is given by

Cp+1 =
1

(p+ 1)!

 
mX
i=0

�ii
p+1 � (p+ 1)

mX
i=0

�ii
p

!
: (3.7)
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However, as discussed in Appendix F, this constant does not accurately

re
ect the global error to be expected when using a method. The proper error

constant is given by

C =
Cp+1

�(1)
: (3.8)

It is this coeÆcient C that we use when comparing the accuracy of methods of the

same order.

Similarly, an explicit s-stage Runge{Kutta method can be represented as

yn+1 = yn +
sX

j=1

bjdj (3.9)

where

d1 = kf(tn; yn)

d2 = kf(tn + c2k; yn + a21d1)

d3 = kf(tn + c3k; yn + a31d1 + a32d2)

...

ds = kf

 
tn + csk; yn +

s�1X
i=1

asidi

!
(3.10)

The (linear) error constant for such a method can be found by considering

the linear problem

y0 = f(t; y) = �y (3.11)

and Taylor expanding (yn+1 � e�kyn) about k = 0 to �nd C:

k

0
@ sX

j=1

bjdj

1
A+ (1� e�k)yn = C(�k)p+1 +O((�k)p+2): (3.12)
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For multistage methods, it is appropriate to normalize the stability domain by di-

viding by the number of stages s, and to normalize the error constant by a factor

sp, where p is the order of the method. This ensures that we are comparing all

time-stepping methods on the basis of equal work.

Stability domains tell which values of k� produce stable solutions in solving

the linear problem y0 = �y for a given time integrator. For linear multistep methods,

the boundary of the stability domain �(�) is found by solving for � in

�
�
ei�
�
� ��

�
ei�
�
= 0: (3.13)

3.3.2 Maximum Imaginary Stability Boundary

Jeltsch and Nevanlinna [18] have shown that the normalized ISB for a

large class of schemes, including multistep and RK methods, cannot exceed 1 in the

classical (nonstaggered) case. This limit is achieved by the classical leapfrog scheme

yn+1 = yn�1 + 2kf(tn; yn): (3.14)

This method has a stability domain [�i; i] on the imaginary axis.

Leapfrog can also be used as a time-staggered method, namely

yn+1 = yn + kf

�
tn +

k

2
; yn+ 1

2

�
: (3.15)

In this context the stability domain is [�2i; 2i]; the extra factor of two simply re
ects
the fact that the time levels are fn; n+ 1

2 ; n+ 1g rather than fn� 1; n; n+ 1g. For
staggered multistep and RK methods that we will consider, this implies a maximum

normalized ISB of 2.



50

3.4 Staggered Adams{Bashforth and backwards di�erentiation meth-

ods

(This section is the author's work, with the comparisons to St�ormer meth-

ods done by Toby Driscoll.)

To utilize the methods in Sections 3.4 - 3.6, we require only that u and @u
@t

are used on interlaced time levels. However, as noted in Section 3.2, many (if not all)

systems of linear wave equations can be rewritten in the form ut = f(t; v(t)); vt =

g(t; u(t)) (where u and v may be vectors). In this case, by having u on one time level

and v on the other interlaced time level, one is e�ectively able to double the ISB.

(Section 3.3.2 demonstrates this for the leapfrog method.) We envision our methods

being used for such systems of wave equations.

We �rst consider staggered versions of the Adams{Bashforth and backwards

di�erentiation time integrators, denoted ABS and BDS respectively. To illustrate

our notation, we show in Figure 3.4 four di�erent ways of representing the third

order ABS method (ABS3): a representative stencil, the stencil coeÆcients, the

polynomials �(z) and �(z), and the explicit Taylor formula. Note that all coeÆcients

listed in this paper can be found via Pad�e expansions (see [11] or Section 2.3).

In Table 3.1 we give for stable BDS methods the shape and coeÆcients of

the stencil, the error constant, a picture of the stability domain, and the ISB. (Note

that by stable, we mean zero-stable, i.e. that all roots of �(z) are located within the

unit disk, with roots on the unit circle being simple.) Tables 3.2 and 3.3 give the

same information for useful ABS and AB methods up to order 8.
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time
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25=24
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1=24

3
7777777777775

�(z) =
�
z3 � z2

�
�(z) = 1

24

�
25z2 � 2z + 1

�
z1=2

y(t+ k) = y(t) + k
24

�
25y0

�
t+ k

2

�
� 2y0

�
t� k

2

�
+ y0

�
t� 3k

2

��
+O(k4)

Figure 3.4: Four representations of ABS3: stencil shape, coeÆcients, generating
polynomials �(z) and �(z), and explicit Taylor formula. Here, represents an
unknown function value, while / u stands for a known function/derivative value.
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Table 3.1: Staggered backwards di�erentiation time integrators. The normalized
local truncation error for BDSp is Ckp+1f (p+1)(�), where C is the error constant.
Only stable methods are shown.

Name Stencil CoeÆcients Error Stability ISB
Constant Domain

BDS2
(leapfrog)

u

�
1

1
�1

�
1
24 -0.1 0.1

-2

-1

1

2

2

BDS3

u

2
66664

1
24
23

� 21
23

� 3
23

1
23

3
77775 1

24 -0.2 0.2

-2

-1

1

2

5
3 ' 1:667

BDS4

u

2
6666664

1
12
11

� 17
22

� 9
22

5
22

� 1
22

3
7777775

71
1920 -0.03 0.03

-1

1

1
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Table 3.2: Staggered Adams-Bashforth time integrators. The normalized local trun-
cation error for ABSp is Ckp+1f (p+1)(�), where C is the error constant. Only meth-
ods with nonzero ISBs are shown (for orders p < 10).

Name Stencil CoeÆcients Error Stability ISB
Shape Constant Domain

ABS2
(leapfrog)

u

"
1

1
�1

#
1
24 -0.1 0.1

-2

-1

1

2

2

ABS3

u

u

u

2
664

1
25=24

�1
�1=12

1=24

3
775 1

24 -0.15 0.15

-1.5

1.5

12
7
' 1:714

ABS4

u

u

u

u

2
666664

1
13=12

�1
�5=24

1=6

�1=24

3
777775

223
5760 -0.15 0.15

-1

1

4
3
' 1:333

ABS7

u

u

u

u

u

u

u

2
6666666664

1
1152511=967680

�1
�7969=10752

134881=107520

�294659=241920
76921=107520

�12629=53760
32119=967680

3
7777777775

1111
35840

-6.·10-6 6.·10-6

-0.3

0.3

30240
81469

' 0:371

ABS8

u

u

u

u

u

u

u

u

2
666666666664

1
295627=241920

�1
�103021=107520

102437=53760

�2228531=967680
24197=13440

�95251=107520
121049=483840

�1111=35840

3
777777777775

13528301
464486400

-2.·10-8 2.·10-8

-0.2

0.2

4320
20209

' 0:214
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Table 3.3: Nonstaggered Adams-Bashforth time integrators. The normalized local
truncation error for ABp is Ckp+1f (p+1)(�), where C is the error constant. Other
than AB2, only methods with nonzero ISBs are shown (for orders p < 10).

Name Stencil CoeÆcients Error Stability ISB
Shape Constant Domain

AB2 u

u

2
664

1

�1 3=2

�1=2

3
775 5

12 -1 -0.5

-0.75

0.75

0

AB3
u

u

u

2
66664

1

�1 23=12

�4=3

5=12

3
77775 3

8 -0.5-0.25 0.1

-0.8

-0.4

0.4

0.8

12

5
p
11
' 0:724

AB4

u

u

u

u

2
66666664

1

�1 55=24

�59=24

37=24

�3=8

3
77777775

251
720 -0.3 -0.15

-0.4

-0.2

0.2

0.4

52

15
p
65
' 0:430

AB7

u

u

u

u

u

u

u

2
66666666664

1

�1 198721=60480

�18637=2520
235183=20160

�10754=945
135713=20160

�5603=2520
19087=60480

3
77777777775

5257
17280 -0.05-0.025

-0.06

-0.03

0.03

0.06

' 0:058

AB8

u

u

u

u

u

u

u

u

2
6666666666664

1

�1 16083=4480

�1152169=120960
242653=13440

�296053=13440
2102243=120960

�115747=13440
32863=13440

�5257=17280

3
7777777777775

1070017
3628800 -0.025

-0.03

-0.015

0.015

0.03

' 0:029
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The ABS and BDS methods of order 2 are both equivalent to the leapfrog

method. ABS and BDS methods are both explicit (whereas nonstaggered BD meth-

ods are implicit). AB and ABS methods are always stable; BDS methods are stable

for orders up through 4 (while nonstaggered BD methods are stable for orders up

through 6). Note that either �(z) or �(z) has a z1=2 factor because of the staggering

setup.

Stability domains for staggered methods are symmetric with respect to

both coordinate axes; one can see this by noting that there is symmetry across the

x-axis (true of all stability domains because �(�) = �(��)) as well as symmetry

about the origin (which comes from the structure of staggered methods: � is an odd

function of r = ei�). Because of these symmetries and because stability domains

must approach � = 0 vertically (near the origin, �(�) � i�), staggered methods have

no real axis coverage. Thus, these methods are only appropriate for propagation

problems. (However, through exponential time-stepping [27], the schemes can also

be applied to problems such as attenuation in Maxwell's equations for lossy media.)

The exact ISBs in Tables 3.1, 3.2, and 3.3 were found by solving for � in

the equation

Real

"
�
�
ei�
�

� (ei�)

#
= 0: (3.16)

For staggered methods, the ISB occurs at � = �
2 because of stability domain sym-

metries. For AB3, the ISB occurs at � = arccos
�
1
10

�
. For AB4, the ISB occurs at

� = arccos
��4

9

�
. The ISB can be found from these values by substituting � into

�(ei�)
�(ei�)

.

As will be discussed in section 3.6.1, AB methods have a non-zero ISB only

for methods of order 3, 4, 7, 8, 11, 12, etc.; ABS methods additionally include order

2. Note that the error constants for the staggered methods are approximately nine

to ten times smaller than those of the nonstaggered methods of equivalent orders. In
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addition, staggering increases the ISB by a factor of 2.4-7.4, with the factor growing

as order increases.

We can also compare the staggered methods to St�ormer methods [13] in

those cases for which the problem can be reformulated as a second order system,

utt = F (t; u), vtt = G(t; v). With compatible de�nitions we �nd ISBs of around

2, 1:73, 1:41, 1:11, 0:84, 0:62, and 0:46 for orders 2{8. The associated error con-

stants are approximately 0:083, 0:083, 0:079, 0:075, 0:071, 0:068, and 0:066. Thus

the ABS methods compare favorably for orders of accuracy four and less, and unfa-

vorably thereafter. However, formulating wave equations using two time derivatives

sometimes creates diÆculties in implementing boundary conditions.

To implement one of the time-staggered methods, one needs to obtain start-

ing values for several time levels after the initial condition. For nonstaggered multi-

step methods, this is usually accomplished with a Runge{Kutta method. For stag-

gered time integrators, one should obtain as many (half-integer) levels of u and v as

needed using a nonstaggered Runge{Kutta method and then select out those needed

to interlace u and v appropriately.

3.5 Staggered free parameter multistep methods

(This section is the author's work.)

We have developed multistep methods that allow free parameters due to

suboptimization of order. These free parameters may be used to decrease the error

constant, increase the ISB, or often both. In this section, we discuss staggered

free parameter schemes and o�er two examples of such methods as illustrations

of opportunities available in this area. Appendix G discusses nonstaggered free

parameter schemes.
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3.5.1 Fourth order free parameter method: 7
2-step, one parameter

We consider methods with stencils of the following form:

u

u

u

u

2
666664

1
�3

�2

�2
�1

�1

�0

3
777775

While it is possible to �nd a �fth order method of this form, it is not stable (see

Section 3.6.2). We instead search for fourth order methods containing one free

parameter. This gives a linear system of equations which has the following solution

with parameter �1.

2
666664

1
�1 +

11
12

24�1 � 5
22�1 �

31
8

�24�1 + 4
�1

� 1
24

3
777775 (3.17)

This method is stable for �1 2
�
1
8 ;

5
24

�
. We note that for �1 =

1
6 , we recover ABS4.

This method's error constant is C = 97�136�1
5760(8�1�1)

. As �1 ! 1
8 , the ISB of the

method approaches � 1:714 but the error constant becomes unbounded. We thus

observe a trade-o� between accuracy and stability for this method. This is illustrated

in Figure 3.5.1. If one is willing to sacri�ce some accuracy to gain in stability, this

method would provide the means to do so.

As an example, we give the stability domain of the method that has �1 =

0:126 in Figure 3.5.1. This method has an ISB of � 1:708 and an error constant of

� 2:48.
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Figure 3.5: Trade-o� between accuracy (error constant) and stability (ISB) for
method (3.17)
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Figure 3.6: Stability domain of method (3.17) for �1 = 0:126
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3.5.2 Fourth order free parameter method: 4-step, two parameter

We consider methods with stencils of the following form:

u

u

u

2
6666664

1
�3

�3

�2
�2

�1
�1

�0

3
7777775

We search for fourth order methods containing two free parameters. The linear

system of equations to be solved gives the following solution with parameters s and

t.

2
66666664

1
12
11

+ 1
22
s

� 17
22

+ 577
528

s� 1
24
t

s
�9
22
� 201

176
s+ 9

8
t

t
5
22

+ 9
176

s� 9
8
t

1
22
� 1

528
s+ 1

24
t

3
77777775

(3.18)

Note that for s = 0 and t = 0, we recover BDS4. The set of (s; t)-values for which this

scheme is stable is roughly a triangle in the (s; t)-plane with vertices at approximately

(�1:98; 1:0016), (�0:3;�0:8), and (1:5; 1:16).

The error constant of this scheme is

C =
(1704 � 127s� 198t)

1920(24 + 23s+ 22t)
: (3.19)

By choosing various values of the parameters for which the method is stable, we can

change the error constant and the ISB of the method. As the ISB approaches the

theoretical limit of 2 (s and t approach the upper left-hand corner of the triangle of

stability), the error constant becomes unbounded. We thus again observe a trade-o�

between accuracy and stability.

We give three examples of interest:
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� s = �1, t = 1:045. ISB � 1:8822, error constant C � 0:03526. While the er-

ror constant is comparable to that of ABS4, there is a dramatic improvement

in the ISB. We show the stability domain of this method in Figure 3.7(a).

� s = 0:74, t = 1:121. ISB � 1:337, C � 0:0110. This method improves on the

accuracy of ABS4 by about a factor of 3 while maintaining about the same

ISB.

� s = �1:95, t = 1:00155, ISB � 1:995, C � 32:34. This method has an

ISB very close to 2, the theoretical limit. See Figure 3.7(b) for the stability

domain of this method.

Note that these free parameter methods require no more function evalu-

ations than ABS4; all multistep methods require only one function evaluation per

time step. As we have not explored the properties of these free parameter schemes

in any great detail, we exclude them from further analysis.

-0.0002 0.0002

-2

-1.5

-1

-0.5

0.5

1

1.5

2

-0.0004 0.0004

-2

-1.5

-1

-0.5

0.5

1

1.5

2

Figure 3.7: Stability domains of the fourth order staggered free parameter scheme
(3.18): (a) ISB � 1:8822, C � 0:0353 (b) ISB � 1:995, C � 32:34

3.6 Theoretical Considerations

(Proof of the �rst result was done by Bengt Fornberg and by the author,

while proof of the second result was done by the author.)
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3.6.1 Imaginary Stability Boundary of Adams{Bashforth methods

Adams{Bashforth methods have non-zero ISBs only for orders 3; 4; 7; 8; 11; 12,

etc. Staggered AB methods additionally include order 2 (leapfrog). Nonstaggered

Adams-Moulton methods (implicit versions of Adams-Bashforth methods) have non-

zero ISBs only for orders 1; 2; 5; 6; 9; 10, etc. Proofs of these results are given in

Appendix H.

3.6.2 Staggered analogue of Dahlquist's First Stability Barrier

Dahlquist's First Stability Barrier for multistep methods states that the

order p of an explicit stable m-step method must satisfy p � m [5]. The analogue of

this theorem for staggered multistep methods is:

The order p of an explicit stable m-step staggered method satis�es

p �

8>>>>>><
>>>>>>:

m , m an even integer

m+ 1
2 , m a half-integer

m+ 1 , m an odd integer

(3.20)

Our proof of this theorem follows those of Jeltsch and Nevanlinna [19] and

Dahlquist [5] and is given in Appendix I.

3.7 Staggered Predictor-Corrector Methods

We have investigated staggered predictor-corrector methods and found that

these methods do not hold as much promise as staggered multistep and Runge{Kutta

methods. We discuss our results here.

Our goal was to �nd a staggered predictor-corrector method with a large

ISB. From Section 3.3.2, we know that because predictor-corrector methods re-

quire two function evaluations per time step, the largest possible ISB for staggered

predictor-corrector methods is 4. We considered various combinations of ABS and
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AMS methods as well as other methods. The maximum possible ISB that we found

was � 1, which was for ABS4 (predictor)/AMS4 (corrector). After normalizing

this for comparison to multistep methods, we �nd that it is far inferior to ABS4 and

BDS4. We believe that these schemes do not hold promise because implicit staggered

multistep methods are too implicit to be of practical use (i.e. because of staggering,

yn+1 depends implicitly on fn+2 rather than fn+1). We thus did not further consider

staggered predictor-corrector methods.

3.8 Staggered Runge{Kutta methods

(The �rst subsection was researched by Toby Driscoll while the second

subsection was researched by the author.)

Multistage methods can also be put into a staggering framework. We

rewrite the ordinary di�erential equation in the form

u0 = f(t; v(t))

v0 = g(t; u(t)):
(3.21)

The splitting into u and v (each could be a vector) allows quantities to be given at

o�set time levels, as suggested in section 3.2. The splitting into f and g re
ects that

values of u0 (or v0) are given at time levels staggered with respect to u (or v).
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3.8.1 Advancing u and v separately

One form for a staggered Runge{Kutta (RKS) method is

d1 = kf(tn+1=2; vn+1=2)

d2 = kg(tn + c2k; un + a21d1)

d3 = kf(tn+1=2 + c3k; vn+1=2 + a32d2)

d4 = kg(tn + c4k; un + a41d1 + a43d3)

...

ds = kf(tn+1=2 + csk; vn+1=2 + as2d2 + � � �+ as;s�1ds�1)

un+1 = un + b1d1 + b3d3 + � � �+ bsds;

(3.22)

if s is odd. (If s is even, the �rst stage should be an evaluation of g at time tn, and

the stages used to advance from un to un+1 are the even-numbered ones.) The same

formula can then be used to advance v, once references to f and g are switched and

time levels are shifted forward by 1
2 . Observe that advancing both u and v by one

step requires s evaluations each of f and g. The form of the governing equations

in (3.21) suggests that an evaluation of both f and g should count as one stage,

so (3.22) is an s-stage method.

The coeÆcients in such a formula can be derived by straightforward, if

laborious, Taylor expansion of both the exact di�erence

u (t = k(n+ 1)) � u (t = kn)

and the RKS approximation

b1d1 + � � � bsds:

The expansions must be made so that v (and consequently f) is evaluated only at
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tn+1=2, and u (hence g) is evaluated at tn. If more than a few stages are desired,

a symbolic computational package is useful both for generating these expansions

and for solving the system of nonlinear equations that results from equating their

coeÆcients.

Stability analysis follows the usual pattern. The model problem is linear:

"
u

v

#0
=

"
0 �

� 0

# "
u

v

#
:

(Using di�erent scalars in the o�-diagonal entries of the matrix does not change

anything essential because the eigenvalues depend only on the product of those

entries.) In applying the RKS method to the model problem, one �nds that

un+1 = �(k�) vn+1=2 + �(k�) un

vn+3=2 = �(k�) un+1 + �(k�) vn+1=2;

where � and � are polynomials in k�. We can thus write

"
un+1

vn+3=2

#
=

"
1 0

�� 1

#�1 "
� �

0 �

# "
un

vn+1=2

#
=

"
� �

�� �+ �2

#"
un

vn+1=2

#
= Q(k�)

"
un

vn+1=2

#
:

The stability region consists of all values of k� for which both eigenvalues of Q(k�)

are inside the unit circle, or simple and on the unit circle. After a short calculation,

one �nds that [1 w]T is an eigenvector if and only if

w2 = �(k�)w + �(k�); (3.23)

and the corresponding eigenvalue is w2. (This is the same equation that arises

when using the ansatz un = w2n, vn+1=2 = w2n+1.) The two roots w of (3.23) thus

determine the stability region.
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As was mentioned in section 3.3.1, we normalize the stability region by the

number of stages in order to make a fair comparison to one-stage methods. An error

constant can also be de�ned by looking at the �rst error term in the approximate

solution of the linear model problem. This too should be normalized by a factor sp

for a pth order method.

We recognize leapfrog as a 1-stage RKS method of order 2. Computation

of the expansions for 2-stage and 3-stage methods reveals that neither has enough

additional free parameters to improve upon the order of leapfrog. While 4-stage,

third order methods do exist, they do not seem to improve on their nonstaggered

counterparts.

The �rst interesting higher order method is the �ve-stage RKS method.

Here there are 13 constants to be determined in the formula. To achieve fourth order

accuracy, 21 conditions (most of which are nonlinear) must be satis�ed. Remarkably,

there is a family of solutions parameterized by b5. With 
 = (6b5)
�1=2, the tableau

for the general solution is

0

1
4 (2� 
) 1

4 (2� 
)

�1
2
 �1

2


1
4 (2 + 
) 1

4 (2 + 
) 0

1
2
 0 1

2


1� 2b5 b5 b5

(3.24)

(Entries which are blank are zero for structural reasons.) The stability region and

error constant are independent of the choice of the free parameter. The most appeal-

ing member of the family, which we call RKS4, is given with b5 = 1=24 and hence
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 = 2:

d1 = kf(tn+1=2; vn+1=2)

d2 = kg(tn; un)

d3 = kf(tn+1=2 � k; vn+1=2 � d2)

d4 = kg(tn + k; un + d1)

d5 = kf(tn+1=2 + k; vn+1=2 + d4)

un+1 = un +
11
12d1 +

1
24d3 +

1
24d5:

(3.25)

Observe that while 5 stages are required, the stage d1 is actually equivalent to the

future stage d2 for the advance of v from time level n+ 1
2 to n+ 3

2 . Hence only four

evaluations each of f and g are needed to advance both u and v one time step, and

we consider this to be a four-stage method for purposes of normalization of the ISB

and of the error constant.

RKS4 has a simple interpretation. Given the original data un and vn+1=2,

leapfrog is used repeatedly to estimate vn�1=2, un+1, and vn+3=2 in succession. The

three estimates of v values are then combined according to a �nite di�erence stencil

(AMS4) to relate un to the new value of un+1. The method is fourth order due to a

symmetry which produces cancellation in the leapfrog errors.

The stability region of RKS4 is a segment of the imaginary axis, and the

normalized ISB of this method is about 1:425 (see Figure 3.8(a)). Hence for equiva-

lent amounts of work per step, time steps about twice as large as those of standard

RK4 are possible. The error constant is 1=1920, compared to 1=120 for RK4. (Af-

ter normalization for comparison to one-stage methods, these constants become 2=15

and 32=15 respectively.) As with multistep methods, the problem may in many cases

be written as a second order system in time. The three-stage, fourth order Nystr�om

method presented in [13] has an equivalent normalized ISB of about 0:86, far less

than that of RKS4.
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Notice that stages 4 and 5 are independent of stages 2 and 3. The storage

requirements can therefore be kept low. In the following procedure, time dependence

and subscripts on u and v are omitted for clarity, and z1 is assumed to start with

the value kg(u), obtained from the previous advance of v.

z1  v � z1

z1  kf(z1)

z2  kf(v)

z3  u+ z2

z3  kg(z3)

z3  v + z3

z3  kf(z3)

u u+ z1=24 + 11z2=12 + z3=24:

At the end of this procedure, z2 holds the value that serves as stage 2 of the next

advance of v. Only three temporary variables are needed. Each needs to have as

many components as the larger of u and v. In the common situation where u and v

each hold half of the variables of the system, the additional storage is equivalent to

3=2 of the total number of unknowns. In standard fourth order Runge{Kutta, the

best temporary storage is twice the number of unknowns.

3.8.2 Advancing u and v together

The RKS method suggested above evaluates a number of stages to advance

u, then a new set of independent stages to advance v (although RKS4 can reuse one

stage). An alternative is to use a joint set of stages to advance u and v simultaneously.

While still using the same number 2s of individual f and g evaluations per time step

as the other s-stage staggered methods, a potential advantage here is that the number
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Figure 3.8: Stability domains for staggered Runge{Kutta methods: (a) order 4 (eqn.
(3.25)) (b) order 3 (eqn. (3.26))

of free constants grows more quickly with s.

We have explored third order methods that use 6 (half-)stages to advance

both u and v. There are 16 (mostly) nonlinear equations in 20 variables for this

case. We have found three families of solutions to these equations, with the most

interesting case having just one free parameter. This third order, three-stage method

is given here:

d1 = kf(tn+1=2; vn+1=2)

d2 = kg(tn; un)

d3 = kf(tn+1=2 � 1
2k; vn+1=2 � 1

2d2)

d4 = kg(tn +
13
12k; un +

13
12d1)

d5 = kf(tn+1=2 +
1
2k; vn+1=2 +

7
26d2 +

3
13d4)

d6 = kg(tn +
13
12k; un + (9172 � 2
)d1 + (�13

72 + 
)d3 + 
d5)

un+1 = un +
2
3d1 +

1
6d3 +

1
6d5

vn+3=2 = vn+1=2 +
1
13d2 +

6
13d4 +

6
13d6:

(3.26)
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Here 
 is a constant that a�ects the accuracy and stability of the method. The ISB

is approximately optimized if 
 = 104=181. For this choice, the normalized ISB is

� 1:044 and the normalized error constant is 27
=24 � 0:6464. The stability region

is displayed in Figure 3.8(b). For comparison, classical RK3 has a normalized ISB

of 1=
p
3 � 0:577 and normalized error constant of 9=8 = 1:125.

We have by no means exhausted the possibilities for either type of stagger-

ing in Runge{Kutta methods; our intent has been to demonstrate that such methods

do exist and can improve on their nonstaggered counterparts.

3.9 Root portraits

(The work in this section was done primarily by Toby Driscoll after the

concept was introduced by Bengt Fornberg.)

Since our goal is to perform time-stepping for wave equations, it is illu-

minating to compare methods based on their performance on the one-dimensional

scalar wave equation,

ut = vx

vt = ux:
(3.27)

We think of the spatial domain as unbounded and spatial derivatives as exact. For

a Fourier mode whose spatial dependence is ei!x, the wave equation becomes the

ODE system

2
64u
v

3
75
t

=

2
64 0 i!

i! 0

3
75
2
64u
v

3
75 : (3.28)

These equations allow leftgoing and rightgoing modes. When a mode is advanced

in time by an amount k, the solution is multiplied by a factor e�ik!, with the sign

determining only direction of travel.
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For classical multistep methods, the analysis reduces to the situation fa-

miliar from linear stability. The numerical solution is capable of travel in either

direction, and to advance a mode by time k the solution is multiplied by a factor

z(ik!). For linear multistep methods, z is a root of the characteristic polynomial

equation

�(z)� ik!�(z) = 0: (3.29)

When k! = 0, a stable method has exactly one root at z = 1. As ik! travels along

the imaginary axis, this root approximates the exact factor eik! (or its conjugate)

but eventually becomes noticeably di�erent. The other roots of the characteristic

polynomial are physically irrelevant (as long as they are inside the unit circle). When

k! is larger than the ISB of the method, some root is outside the unit disk and the

method becomes unstable.

To visualize this process, we draw a \root portrait" that traces the physi-

cally relevant root as k! takes on all stable values. An example for AB3 is shown in

Figure 3.9.

A point ik! on the imaginary axis should ideally map to e�ik! on the unit

circle, as the tick marks outside the unit circle suggest. The physically relevant root,

as determined by the characteristic polynomial, is perfect at the origin and a good

approximation nearby, but eventually the path of the root diverges from the circle.

When ik! encounters the boundary of the stability region, one of the parasitic roots

not shown is just crossing the unit circle on its way to creating time instability.

A similar analysis can be made for classical Runge{Kutta methods. Here

the characteristic polynomial is linear in z, but there is a polynomial dependence

on ik!. (For orders p less than �ve, this polynomial is just the pth order Taylor

polynomial for eik!.) Also, the stability region must be normalized by the number s

of stages in the method, and the sth root of z must be taken in accordance. Because
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Figure 3.9: Example of a \root portrait." The portion of the imaginary axis which
lies inside the stability region of AB3 is mapped to the physically relevant roots
inside the unit circle. Ideally, the evenly spaced tick marks along the unit circle
should line up with the tick marks along the root path, but this is true only near
the origin.
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there is only one root, the physically relevant root also determines stability.

For staggered multistep schemes, the characteristic equation is again (3.29).

This is now a polynomial in z1=2, and the roots are easily found. Again only one root

per direction of travel is physically relevant. For staggered Runge{Kutta methods,

the stability analysis in section 5 applies; in fact, z1=2 is just the variable w in the

characteristic equation (3.23), and � is purely imaginary in that formula.

Figure 3.10 displays the root portraits for classical and staggered methods of

orders 2, 3, 4, and 7. As the order of a method increases, inner and outer ticks match

up more accurately near z = 1. The stability restriction is made clear by where the

tick marks on the unit circle end. The AB2 and RK2 methods are stable but have

zero ISB. The ABS2, BDS2, and RKS2 methods are all equivalent to leapfrog, which

has the maximum possible ISB of 2. In every case, staggered schemes are seen to

have stability and accuracy properties superior to their nonstaggered counterparts.

Another way to view the root portraits is in terms of numerical dissipation

and dispersion. Because we have eliminated the spatial discretization errors, root

portraits clearly show the errors solely due to the time stepping schemes. The amount

of numerical dissipation in a scheme is shown by how close the path of the root

portrait stays to the unit circle, whereas the amount of dispersion is shown by how

well the inner ticks on the root portrait path match up to the outer ticks on the unit

circle. For example, ABS2/BDS2/RKS2 (leapfrog) and RKS4 have no dissipation

because all roots stay on the unit circle but have signi�cant dispersion near the edge

of the stability domain because the inner and outer ticks do not match well there.

3.10 Numerical experiments

(The work in this section was done by the author.)

The root portrait data can be used to experimentally compare AB, ABS,

BDS, RK, and RKS time integrators for wave propagation. As discussed in the

previous section, when solving equation (3.27), one can model the e�ect that a
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RK
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Figure 3.10: Root portraits for classical and staggered methods of di�erent orders.
Stability of the methods for the wave equation is re
ected by the length of the arc
made by the tick marks on the unit circle. Accuracy is judged by the matching of
inner and outer ticks along the root paths (solid lines). In the case of RKS4, the
root path doubles back on the unit circle in the wrong direction; those tick marks
are omitted for clarity. The existence of an RKS7 formula is unknown, and we do
not yet have a useful RKS3 method for which this analysis is appropriate.
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particular numerical time integrator has on a particular Fourier mode ei!x by solving

equation (3.29) for the physical root z(ik!). We choose the physical root so that the

solution moves strictly to the right. Then the solution at the nth time step is given

by

u(t = kn) = znei!x

v(t = kn) = �znei!x:
(3.30)

We use the initial condition

u(x; 0) =

8><
>:
�
1 + cos

�
x

0:15

��2
; jxj < 0:15

0 ; jxj � 0:15
(3.31)

and advance the solution to �nal time T = 6�, so that the exact �nal solution is the

same as the initial condition. We de�ne N to be the number of function evaluations

used to advance the solution from T = 0 to T = 6�, i.e. the number of time steps

taken multiplied by the number of stages of the time integrating method. This

provides a legitimate comparison between one-step methods like AB, ABS, and BDS

and multistage methods like RK and RKS.

The stability restriction for this problem is k!max < ISB, where k = 6�
N

and !max =
M
2 . Thus we have

N >
3�M

ISB
: (3.32)

We used M = 64 for the experiments in this section.

Figure 3.11 shows a sample run of this method for third order ABS using

N = 375: the initial condition (and exact solution at time T = 6�), the numerical

solution at T = 6�, and the error in the numerical solution. In our comparison tables

given later, we show only the error in the numerical solution. In order to address the
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numerical dissipation of the schemes, we have included the relative loss of energy in

the discrete L2-norm in the upper-right corner of the error plots.

Table 3.4 shows the error in running the second order leapfrog (ABS2, BDS2, RKS2)

method for N = 500 and N = 1000. Table 3.5 compares the errors obtained by

running AB3, ABS3, and BDS3 for N = 500 and N = 1000, while Table 3.6 shows

the errors resulting from running AB4, RK4, ABS4, BDS4, and RKS4 for N = 800

andN = 1600. Finally, Table 3.7 compares the errors in AB7 and ABS7 forN = 2000

and N = 4000, while Table 3.8 compares the errors in AB8 and ABS8 for N = 3000

and N = 6000.

In all cases, staggered methods are superior to nonstaggered methods in

terms of accuracy and stability. While the relative accuracy of nonstaggered versus

staggered methods does not change with order, the improvement in stability from

using staggered methods continues to improve as order increases. It is also interest-

ing to note that the RKS4 method is inferior to ABS4 and BDS4 in accuracy but

marginally better in stability, whereas it improves on RK4 in both respects.

Notice that there is a di�erent character to the error than is customary.

Typically, error trains are one-sided due to spatial discretization error. However, as

noted in the previous section, we have eliminated spatial discretization errors through

the use of the root portrait technique. Thus, the errors shown in these pictures are

solely time discretization errors. These error trains are almost symmetric rather than

one-sided since the schemes are almost dispersion-free. The amount of dissipation is

on the order of machine precision for leapfrog and RKS4 and is reasonably small for

the other schemes.
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−0.085976

Figure 3.11: Sample run of ABS3 using the physically relevant root and N = 375
function evaluations. (a) Initial condition (and exact �nal solution). Note that we
pick the physical root so that the hump moves to the right. (b) Numerical solu-
tion at �nal time T = 6�. (c) Error in the numerical solution. The relative loss�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of the error plot.
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Table 3.4: Error given by running the second order leapfrog method using the root
portrait technique. Leapfrog is the only classical second order multistep method
that has a non-zero ISB. Note that vertical scales di�er by 10

3 . The relative loss�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of the error plots. N is the

number of function evaluations used to reach the �nal time T = 6�.

Method Error at N = 500 Error at N = 1000

Leapfrog

(ABS2)

−1.6

0

1.6

−π 0 π

4.2188e−15

−0.48

0

0.48

−π 0 π

−1.6875e−14

(BDS2)
(RKS2)
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Table 3.5: Error given by running third order methods using the root portrait tech-
nique. Observe that the vertical scales are the same in all cases and that AB3 is

not stable until N > 834. The relative loss
�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper

right-hand corner of the error plots. N is the number of function evaluations used
to reach the �nal time T = 6�.

Method Error at N = 500 Error at N = 1000

AB3 Unstable

−0.6

0

0.6

−π 0 π

−0.053874

ABS3

−0.6

0

0.6

−π 0 π

−0.049417

−0.6

0

0.6

−π 0 π

−0.0087588

BDS3

−0.6

0

0.6

−π 0 π

−0.049146

−0.6

0

0.6

−π 0 π

−0.0087353
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Table 3.6: (a) Error given by running fourth order nonstaggered methods using the
root portrait technique. Note that the vertical scales are the same in all cases and
that AB4 is not stable until N > 1403 and RK4 is not stable until N > 854. N is
the number of function evaluations used to reach the �nal time T = 6�. The relative
loss

�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of the error plots.

Method Error at N = 800 Error at N = 1600

AB4 Unstable

−0.25

0

0.25

−π 0 π

−0.0004525

RK4 Unstable

−0.25

0

0.25

−π 0 π

−0.0051758
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Table 3.6: (b) Error given by running fourth order staggered methods using the root
portrait technique. Note that the vertical scales are the same in all cases. N is the
number of function evaluations used to reach the �nal time T = 6�. The relative
loss

�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of the error plots.

Method Error at N = 800 Error at N = 1600

ABS4

−0.25

0

0.25

−π 0 π

−0.0010809

−0.25

0

0.25

−π 0 π

−3.5431e−05

BDS4

−0.25

0

0.25

−π 0 π

−0.0010738

−0.25

0

0.25

−π 0 π

−3.537e−05

RKS4

−0.25

0

0.25

−π 0 π

4.4409e−16

−0.25

0

0.25

−π 0 π

5.9952e−15
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Table 3.7: Error given by running seventh order methods using the root portrait
technique. AB7 is not stable until N > 10384. Note that vertical scales di�er by

100. The relative loss
�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of

the error plots. N is the number of function evaluations used to reach the �nal time
T = 6�.

Method Error at N = 2000 Error at N = 4000

AB7 Unstable Unstable

ABS7

−7

0

7

−π 0 π

−1.0724e−07
× 10−6

−7

0

7

−π 0 π

−8.7562e−10
× 10−8

Table 3.8: Error given by running eighth order methods using the root portrait
technique. AB8 is not stable until N > 20455. Note that vertical scales di�er by

2000. The relative loss
�
kufinalk2
kuinitialk2

� 1
�
is shown in the upper right-hand corner of

the error plots.

Method Error at N = 3000 Error at N = 6000

AB8 Unstable Unstable

ABS8

−6

0

6

−π 0 π

−1.3782e−10
× 10−8

−3

0

3

−π 0 π

−4.9727e−13
× 10−10
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3.11 Conclusions

We have introduced staggered time integrators for solving systems of wave

equations. We �nd that the staggered versions of Adams-Bashforth and backwards

di�erentiation methods have signi�cantly smaller local truncation errors and greater

ISBs than their nonstaggered counterparts. In addition, staggered schemes are no

more diÆcult to implement than nonstaggered schemes. We have also considered

free parameter multistep methods that allow for additional improvement in the ISB.

Staggered Runge{Kutta methods also show promise for treating hyperbolic systems.

We have introduced a low-storage fourth order method that has twice the ISB and a

much smaller error constant than the classical fourth order Runge{Kutta method and

a third order method with 80% larger ISB and 43% small error constant than RK3.

Table 3.9 summarizes our results concerning staggered fourth order methods and

compares them to some explicit nonstaggered fourth order methods. Experimental

results verify the feasibility of these new methods. In addition, we have presented

several theoretical considerations concerning staggered time integrators.
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Table 3.9: Comparison of fourth order time integrators: nonstaggered vs. staggered.
The normalized local truncation error is Ck5f (5)(�), where C is the normalized error
constant.

Nonstaggered Staggered

Normalized Normalized Normalized Normalized

Name Stencil ISB error Name Stencil ISB error

constant constant

(BD4 implicit) BDS4

u

1:000 � 0:0370

AB4

u

u

u

u

� 0:430 � 0:3486 ABS4

u

u

u

u

� 1:333 � 0:0387

RK4
u

� 0:707 � 2:1333 RKS4 u � 1:425 � 0:1333



Chapter 4

Conclusions

In this dissertation, we have investigated high-order �nite di�erence meth-

ods and staggered time integrators for linear wave equations. A composite method

combines a highly accurate (e.g. block pseudospectral) method on boundaries and

near interfaces with a low computational cost method used on a background grid on

the rest of the computational domain. We envision the methods discussed in this

paper being used for such a background grid.

We �nd that combining

� high orders of accuracy,

� implicitness, and

� staggering

leads to a class of computationally very cost-e�ective �nite di�erence schemes for

equispaced Cartesian grids. As their orders of accuracy increase, these schemes ap-

proach the well-known spectral accuracy of periodic, explicit pseudospectral schemes.

When we combine this with the idea of overlapping subdomains (as in a composite

method), the relatively narrow stencil widths make the schemes well-suited for com-

putations in media with curvilinear material interfaces. The schemes can be applied

to most linear wave-type PDEs of broad interest. In the particular application of

time-domain computational electromagnetics (also known as FDTD), the classical
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Yee scheme uses only the last of the three highlighted concepts. We �nd that ma-

jor improvements in accuracy and eÆciency can be achieved by also incorporating

implicitness and high orders of accuracy.

We have also introduced staggered time integrators for solving systems of

linear wave equations. We �nd that the staggered versions of Adams-Bashforth and

backwards di�erentiation methods have signi�cantly smaller local truncation errors

and greater imaginary stability boundaries than their nonstaggered counterparts.

In addition, staggered schemes are no more diÆcult to implement than nonstag-

gered schemes. We have also considered free parameter multistep methods that

allow for additional improvement in the imaginary stability boundary. Staggered

Runge{Kutta methods also show promise for treating hyperbolic systems. We have

introduced a low-storage fourth order method that has twice the imaginary sta-

bility boundary and a much smaller error constant than the classical fourth order

Runge{Kutta method and a third order method with 80% larger imaginary stability

boundary and 43% small error constant than RK3. In addition, we have presented

several theoretical considerations concerning staggered time integrators, including a

generalization of Dahlquist's First Stability Barrier to staggered schemes.



Bibliography

[1] Y. ADAM, Highly accurate compact implicit methods and boundary conditions,
J. Comput. Phys., 24 (1977), pp. 10-22.

[2] K. ATKINSON, An Introduction to Numerical Analysis, John Wiley, New York,
1989.

[3] R. BURDEN and J. FAIRES, Numerical Analysis, 4th ed., PWS-KENT, Boston,
1989.

[4] L. COLLATZ, The Numerical Treatment of Di�erential Equations, Springer-
Verlag, Berlin, 1960.

[5] G. DAHLQUIST, Convergence and stability in the numerical integration of
ordinary di�erential equations, Math. Scand., 4 (1956), pp. 33-53.

[6] T. A. DRISCOLL and B. FORNBERG, A block pseudospectral method for
Maxwell's equations: I. One-dimensional, discontinuous-coeÆcients case, J.
Comput. Phys., 140 (1998), pp. 1-19.

[7] T. A. DRISCOLL and B. FORNBERG, Block pseudospectral methods for
Maxwell's equations: II. Two-dimensional, discontinuous-coeÆcients case, to
appear in SIAM J. Sci. Comput.

[8] B. FORNBERG, On a Fourier method for the integration of hyperbolic
equations, SIAM J. Numer. Anal., 12 (1975), pp. 509-528.

[9] B. FORNBERG, High-order �nite di�erences and the pseudospectral method
on staggered grids, SIAM J. Num. Anal., 27 (1990), pp. 904-918.

[10] B. FORNBERG, A Practical Guide to Pseudospectral Methods, Cambridge
University Press, Cambridge, UK, 1996.

[11] B. FORNBERG, Calculation of weights in �nite di�erence formulas, SIAM Re-
view, 40, (1998), pp. 685-691.

[12] I.S. GRADSHTEYN and I.M. RYZHIK, (Alan Je�rey, ed.) Table of Integrals,
Series, and Products, 5th ed., Academic Press, Inc., San Diego, CA, 1994.



87

[13] E. HAIRER, S.P. N�RSETT, and G. WANNER, Solving Ordinary Di�erential
Equations I, Springer-Verlag, Berlin, 1991.

[14] R. S. HIRSCH, Higher-order accurate di�erence solutions of 
uid mechanics
problems by a compact di�erencing technique, J. Comput. Phys., 19 (1975),
pp. 90-109.

[15] R. S. HIRSCH, High-order approximations in 
uid mechanics, VKI Lecture
Series 1983-04, Von Karman Inst. for Fluid Dyn., Brussels, 1983.

[16] O. HOLBERG, Computational aspects of the choice of operator and
sampling interval for numerical di�erentiation in large-scale simulation of wave
phenomena, Geophys. Prospecting, 35 (1987), pp. 629-655.

[17] A. ISERLES, A First Course in the Numerical Analysis of Di�erential
Equations, Cambridge University Press, Cambridge, 1996.

[18] R. JELTSCH and O. NEVANLINNA, Stability of explicit time discretizations
for solving initial value problems, Numer. Math., 37 (1981), pp. 61-91.

[19] R. JELTSCH and O. NEVANLINNA, Dahlquist's �rst barrier for multistage
multistep formulas, BIT, 24 (1984), pp. 538-555.

[20] M. KINDELAN, A. KAMEL, AND P. SGUAZZERO, On the construction and
eÆciency of staggered numerical di�erentiators for the wave equation, Geo-
physics, 55 (1990), pp. 107-110.

[21] Z. KOPAL, Numerical Analysis (2nd Ed.), Chapman and Hall, London, 1961.

[22] K. S. KUNZ AND R. J. LUBBERS, The Finite Di�erence Time Domain for
Electromagnetics, CRC Press, Boca Raton, FL, 1993.

[23] S.K. LELE, Compact �nite di�erence schemes with spectral-like resolution, J.
Comput. Phys., 103 (1992), pp. 16-42.

[24] R. MITTET, O. HOLBERG, B. ARNSTEN, AND L. AMUNDSEN, Fast �nite
di�erence modeling of the 3-D elastic wave equation, Society of Exploration
Geophysics Expanded Abstracts, 1 (1988), pp. 1308-1311.

[25] S. A. ORSZAG AND M. ISRAELI, Numerical simulation of viscous
incompressible 
ows, Ann. Rev. Fluid Mech., 6 (1974), pp. 281-318.

[26] J. STOER and R. BULIRSCH, Introduction to Numerical Analysis, Springer-
Verlag, New York, 1980.

[27] A. TAFLOVE, Computational Electrodynamics: The Finite-Di�erence
Time-Domain Method, Artech House, Boston, 1995.

[28] R. VICHNEVETSKY AND J. B. BOWLES, Fourier Analysis of Numerical
Approximations of Hyperbolic Equations, Studies in Applied Mathematics 5,
SIAM, Philadelphia, PA, 1982.



88

[29] K.S. YEE, Numerical solution of initial boundary value problems involving
Maxwell's equations in isotropic media, IEEE Trans. Antennas and Propaga-
tion, 14 (1966), pp. 302-307.



89

APPENDICES

A. Explanation of the Pad�e algorithm given in Section 2.3

B. Derivation of the limit expressions in Table 2.8

C. Conversions between Kopal's FD coeÆcients and those given in Chapter 2

D. Staggered di�erentiation matrix

E. Derivation of equation (2.7)

F. De�ning the local truncation error

G. Nonstaggered free parameter methods

H. Proof of the result found in Section 3.6.1 concerning ISBs of AB, ABS, and AM

methods

I. Proof of the staggered analogue of Dahlquist's �rst barrier

The author made signi�cant contributions to Appendices C, D, E, F, H,

and I. Some contributions were made to Appendix G. Appendices A and B were

formulated by Bengt Fornberg.



Appendix A

Explanation of the Pad�e algorithm given in Section 2.3

In this appendix, we explain why the Pad�e algorithm works in the special

case given in Section 2.3. We follow the argument in [11], which can easily be

generalized to other values of m, s, d and n.

We search for coeÆcients bi and ci so that

b0f
0(x� h) + b1f

0(x) + b2f
0(x+ h)

� c0f

�
x� 3

2
h

�
+ c1f

�
x� 1

2
h

�
+ c2f

�
x+

1

2
h

�
+ c3f

�
x+

3

2
h

�
(A.1)

becomes exact for as high degree polynomials f(x) as possible. Substituting f(x) =

ei!x into (A.1) gives

i!
h
b0e

�i!h + b1 + b2e
i!h
i
ei!x

�
h
c0e

� 3
2
i!h + c1e

� 1
2
i!h + c2e

1
2
i!h + c3e

3
2
i!h
i
ei!x (A.2)

with the new goal being to make the relation as accurate as possible if locally ex-

panded around ! = 0 (cf. [28], pp. 24-26). After cancelling the factor ei!x and

substituting ei!h = �, we get

�
1
2
ln �

h
� c0 + c1� + c2�

2 + c3�
3

b0 + b1� + b2�2
(A.3)

This needs to be as accurate as possible (meaning as high order as possible) around
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� = 1. Pad�e expansion of the left-hand side around � = 1 to order [3,2] produces the

desired coeÆcients:

�
1
2
ln �

h
� 1

h

(� � 1) + (� � 1)2 + 17
240(� � 1)3

1 + (� � 1) + 9
80(� � 1)2

=

�� 17
240 � 63

80� +
63
80�

2 + 17
240�

3
�
1
h�

9
80 +

31
40� +

9
80�

2
� (A.4)

The notation above in the description of the weights algorithm was chosen to agree

with [11]. It is noted there that the explicit case (d = 0) can be handled even more

easily by substituting a Taylor expansion for the Pad�e expansion used here (since the

denominator in (A.3) is then one). Note that this argument can easily be generalized

to other values of m, s, n, and d.



Appendix B

Derivation of the limit expressions in Table 2.8

We o�er a brief argument that leads to the limit expressions in Table 2.8.

One case is suÆcient to illustrate the general argument. We consider the following

tridiagonal (3-diagonal) regular grid case:

a�1 a0 a1

e e e

� � � � � � � � � � � � � � � � � �
b�7 b�6 b�5 b�4 b�3 b�2 b�1 b0 b1 b2 b3 b4 b5 b6 b7 !

As their widths n increase, the �nite-sized stencils are exact for polynomials

of increasingly higher orders. The in�nite-width stencil will then also be exact for all

trigonometric modes sin(!x), which have derivative ! cos(!x). When the in�nite-

width stencil is applied to a particular mode at x = 0 with step size h = 1, this

gives

! [a�1 cos(�!) + a0 cos(0!) + a1 cos(!)]

= 2 [b1 sin(!) + b2 sin(2!) + b3 sin(3!) + :::] (B.1)

which holds for all ! 2 R. (Note that we have used that b�j = �bj.) We next make

the very reasonable assumptions that

(1) the desired limit represents the most accurate derivative approximation avail-

able of the desired form, and
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(2) the derivative, being a local property of a function, is best approximated

when the coeÆcients bk decay to zero as fast as possible (subject to (B.1)

holding true).

The left-hand side of (B.1) is a product of the step function ! (which jumps

at ! = �� when periodically extended) and a periodic function a0+2a1 cos! (since

by symmetry a�1 = a1). The decay rate of the Fourier coeÆcients of this product is

maximal if the LHS is as smooth as possible at ! = ��, i.e. when (a0 + 2a1 cos!)

has a zero there of as high degree as possible. This occurs when a0 = 2a1, which

when combined with the restriction that
P

j aj = 1, gives a0 =
1
2 and a1 =

1
4 . With

these values,

a0 + 2a1 cos! =
�
cos

!

2

�2
: (B.2)

By integrating equations (B.2) and (B.1) against cos (!k) and sin (!k) respectively

(and substituting (B.2) into (B.1)), we thus (in the tridiagonal case m = 1) obtain

the in�nite-order coeÆcients from (B.1) as

ak =
1

�

Z �

0
cos(!k)

�
cos

!

2

�2
d!

bk =
1

�

Z �

0
! sin(!k)

�
cos

!

2

�2
d! (B.3)

The case of general m follows completely analogously and leads to the expressions

listed in Table 2.8.



Appendix C

Conversions between Kopal's coeÆcients and those in Chapter 2

In [21], Kopal gives tables of coeÆcients in terms of the di�erence operators

Æ and � where

Æ(yn) = yn+1=2 � yn�1=2

�(yn) = yn � yn�1: (C.1)

In this appendix, we help make clear the connection between the coeÆcients

given in Chapter 2 and those listed in Appendix II of Kopal.

One can use Kopal's Tables 2.1 and 2.2 to �nd the FD coeÆcients for

nonstaggered approximations of �rst and second derivatives, respectively. Tables 2.4

and 2.5 of Kopal can be used to �nd the coeÆcients of staggered approximations of

�rst and second derivatives, respectively.

For explicit schemes in Kopal, one should consider
N

(0)
j

D
(j)
0

. For 3-diagonal

schemes, one wants
N

(1)
j

D
(j)
1

. For 5-diagonal schemes, one should consider
N

(2)
j

D
(j)
2

. We

o�er one example, the sixth order staggered 3-diagonal approximation to the �rst
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derivative. Using Table 2.4 of Kopal and j = 1, we �nd that

D
(1)
1 f 0k � ÆN

(1)
1 fk"

1 +
9

5

�
Æ

4

�2
#
f 0k � Æ

�
1 +

17

240
Æ2
�
fk

f 0k +
9

80

�
f 0k�1 � 2f 0k + f 0k+1

� � Æ

�
fk +

17

240
(fk�1 � 2fk + fk+1)

�
9

80
f 0k�1 +

31

40
f 0k +

9

80
f 0k+1 �

��fk�1=2 + fk+1=2

+
17

240

��fk�3=2 + 3fk�1=2 � 3fk+1=2 + fk+3=2

��
9

80
f 0k�1 +

31

40
f 0k +

9

80
f 0k+1 � �

17

240
fk�3=2 �

63

80
fk�1=2 +

63

80
fk+1=2 +

17

240
fk+3=2

(C.2)

Note that this matches the n = 2 case in Table 2.7. Other coeÆcients can be derived

in the same manner.

Although not discussed here, one can use other combinations of N 's andD's

from Kopal's tables than those discussed above to �nd coeÆcients for noncentered

schemes.



Appendix D

Staggered di�erentiation matrix

A di�erentiation matrix is a matrix which, when multiplied by a vector of

function values at discrete gridpoints, gives (pseudospectral) derivative values at a

set of discrete equispaced locations.

An example is given in [10]. If one assumes that the data is periodic with

period 2, it is possible to �nd a matrix �D such that

2
6666666666664

v0(x1)

...

v0(xj)

...

v0(xN )

3
7777777777775
=

2
6666666666664

�D

3
7777777777775

2
6666666666664

v(x1)

...

v(xj)

...

v(xN )

3
7777777777775

(D.1)

This (periodic) nonstaggered pseudospecral di�erentiation matrix �D is cyclic

and is given by

�Di;j =

8><
>:

�(�1)i�j
2 sin [�(i�j)=N ] i 6= j

0 i = j
(D.2)

Similarly, one can �nd the staggered pseudospectal di�erentiation matrix
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D (assuming the data has period 2) that satis�es

2
6666666664

v0(x1=2)
...

v0(xj�1=2)
...

v0(xN�1=2)

3
7777777775
=

2
6666666664

D

3
7777777775

2
6666666664

v(x1)
...

v(xj)
...

v(xN )

3
7777777775

(D.3)

This matrix D is cyclic and given by

Di;j =
�(�1)i�j�1

2N

cot
��
i� j � 1

2

�
�
N

�
sin
��
i� j � 1

2

�
�
N

� : (D.4)

If one instead desired the di�erentiation matrix forh
v0(x3=2) : : : v0(xj+1=2) : : : v0(xN+1=2)

i
, this would be given by

Di;j =
�(�1)i�j

2N

cot
��
i� j + 1

2

�
�
N

�
sin
��
i� j + 1

2

�
�
N

� : (D.5)

One can prove this by following the derivation for �D given in [10], as follows.

We begin with the limiting (in�nite width) staggered FD stencil from equa-

tion (2.5) (with h = 2=N)

b1;k =
N(�1)(k� 1

2
)

�k2
(D.6)

Assuming we have data with period 2, we can add together period-wide sections of

the stencil to create an equivalent stencil that covers only one period of the data.
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These weights are given by

d1;k =
N(�1)k�1=2

2�

1X
j=�1

(�1)j
�(k + jN)2

=
(�1)k�1=2

2�N

1X
j=�1

(�1)j
(j + k=N)2

=
�(�1)k�1=2

2N

cot (k�=N)

sin (k�=N)
(D.7)

We know that this di�erentiation matrix is cyclic with (i; j)th element Di;j

given by d1;i�j�1=2 for the �rst case given above and given by d1;i�j+1=2 for the

second case given above.

We thus �nd that for the case given in (D.3),

Di;j =
�(�1)i�j�1

2N

cot
��
i� j � 1

2

�
�
N

�
sin
�
(i� j � 1=2) �N

� : (D.8)

The second case simply changes the �1
2 to 1

2 . For data with period other

than 2, one must scale appropriately.



Appendix E

Derivation of equation (2.7)

This derivation was done by the author with the help of Professor Ben

Herbst.

E.1 Derivation of the expression for dk

Our goal is to solve Ax = b, where A is an in�nite banded symmetric

Toeplitz matrix and b is a vector containing the coeÆcients bmn;k; where m and n are

�xed. Equivalently, we wish to solve a Æ x = b, where

a =
h
� � � 0 a�m a�m+1 � � � a�1 a0 a1 � � � am�1 am 0 � � �

i
;

x = fxjg1j=�1 ;

and

b = ep (the vector consisting of all zeros except for a one in the pth position):

We take the discrete Fourier transforms of a; x; and b and use the fact that the

original matrix is banded and symmetric to obtain
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â(�) =
P1

j=�1 aje
ij�

=
Pm

j=�m aje
ij�

= a0 + 2
Pm

j=1 aj cos(jx);

x̂(�) =
P1

j=�1 xje
ij�;

and

b̂(�) =
P1

j=�1 bje
ij�

= eip�:

(E.1)

Since a Æ x = b, from the Fourier convolution theorem we have â(�)x̂(�) = b̂(�), so

that x̂(�) = b̂(�)=â(�). Taking the inverse Fourier transform to solve for x gives

xj = 1
2�

R �
�� x̂(�)e

�ij� d�

= 1
2�

R �
��

b̂(�)

Â(�)
e�ij� d�

= 1
2�

R �
��

ei(p�j)�
a0+2

Pm
q=1 aq cos(qx)

d �

= 1
2�

R �
��

cos((p�j)x)+i sin((p�j)x)
a0+2

Pm
q=1 aq cos(qx)

d�

(E.2)

We then recognize that because we only want to measure position relative

to the center position, the relevant index variable is k � p� j: In addition, because

the denominator of the integrand is even, our integrand is the sum of an even function

and an odd function; after integration, only the �rst part remains. We thus conclude

that the inverse matrix of a symmetric banded Toeplitz matrix is also symmetric and

Toeplitz with entries dk along diagonal k:

dk =
1

�

Z �

0

cos(kx)

amn;0 + 2
Pm

j=1 a
m
n;j cos(jx)

dx: (E.3)
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E.2 Veri�cation of the expression for dk: 5-diagonal case

Although we verify the dk formula only for the 5-diagonal case (m = 2),

one can easily generalize the argument given for any case.

A is a Toeplitz matrix of bandwidth 5 and A�1 is the Toeplitz matrix with

entries dk along diagonal k. Because A
�1A = I, we claim that

dk�2a�2 + dk�1a�1 + dka0 + dk+1a1 + dk+2a2 =

8<
: 1 k = 0

0 k 6= 0
: (E.4)

where ai = a2n;i. We substitute dk from (E.3), and the left-hand side of (E.4) becomes

1

�

Z �

0

a
�2 cos (k � 2)x+ a

�1 cos (k � 1)x+ a0 cos kx+ a1 cos (k + 1)x+ a2 cos (k + 2)x

(a0 + 2a1 cosx+ 2a2 cos 2x)
dx

=
1

�

Z �

0

a0 cos kx+ 2a1 cos kx cosx+ 2a2 cos kx cos 2x

a0 + 2an;1 cosx+ 2a2 cos 2x
dx

=
1

�

Z �

0

cos kxdx

=

8<
:

1 k = 0

0 k 6= 0
: (E.5)

where we have used a�i = ai and trigonometric identities.



Appendix F

De�ning the local truncation error of time integrators

(The work in the section was done by Toby Driscoll and the author.)

Traditionally, local truncation error for a linear multistep numerical time

integrator has been de�ned in terms of Taylor expansions. Although this de�nition

gives the correct order of accuracy for a scheme, often it does not give the correct

coeÆcient multiplying the error term. The proper de�nition of local truncation error

is de�ned in terms of Pad�e expansions. We give examples of schemes for which the

de�nitions coincide and schemes for which they di�er.

F.1 Discussion

In general, there are three di�erent ways to de�ne the local truncation (dis-

cretization) error of a pth order multistep scheme:

(1) Taylor expansion of the stencil about k = 0 [2, 3, 26] :

�(Z)y(t)� k�(Z)y0(t) = C1k
p+1y(p+1)(�) +O(kp+2)

(2) Taylor expansion about z = 1 [17] (although see the footnote on p.76 refer-

ring to de�nition 3) :

�(z)� �(z) ln z = C2(z � 1)p+1 +O((z � 1)p+2)
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(3) Pad�e expansions about z = 1 [13] :

�(z)
�(z) � ln(z) = C3(z � 1)p+1 +O((z � 1)p+2)

where Z is the forward shift operator.

De�nitions 1 and 2 are equivalent (because the di�erentiation operator

D = 1
k lnZ), but de�nition 3 leads to di�erent leading error coeÆcients for many

methods because

C1 = C2 = �(1)C3

For standard Adams-Bashforth and Adams-Moulton schemes, �(1) = 1,

and there is no di�erence between C1 and C3. However, for backwards di�erentiation

and other schemes, C1 and C3 di�er. Experimental results giving the global error

strongly indicate that de�nition 3 is the appropriate de�nition. One can also come

to this conclusion by examining a special case. Consider a multistep method that

depends only on previous function values and not on derivative values. For this

case, �(z) = 0 for all z, and the di�erential equation plays no role, so the solution

cannot be convergent. De�nitions 1 and 2 could nevertheless indicate a high degree

of accuracy if the di�erence scheme is an extrapolation method. On the other hand,

de�nition 3 would correctly re
ect an in�nite error (since �(1) = 0 for this case).

More generally, �(1) = 0 and �0(1) = �(1) for any consistent method. If

�(1) is small, then 1 is nearly a double root of the di�erence equation and the method

is nearly unstable.

We thus conclude that the correct de�nition of local truncation error should

be based on Pad�e expansions (de�nition 3) and not on Taylor expansion (de�nitions

1 and 2).
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F.2 Examples

F.2.1 Adams-type methods

All Adams-Bashforth and Adams-Moulton methods are consistent and have

�(z) = zm � zm�1. Then, �(z = 1) = �0(z = 1) = m� (m� 1) = 1: Since �(1) = 1,

Taylor expansions and Pad�e expansions are equivalent for these methods.

One example is the fourth order Adams-Bashforth scheme, which has

�(z) = z4 � z3; �(z) =
55

24
z3 � 59

24
z2 +

37

24
z � 3

8
: (F.1)

The error constant is C = 251
720 .

The third order Adams-Moulton scheme has

�(z) = z2 � z; �(z) =
5

12
z2 +

2

3
z � 1

12
: (F.2)

The error constant is C = � 1
24 .

F.2.2 Backwards di�erentiation methods

The fourth order backwards di�erentiation scheme has

�(z) = z4 � 48

25
z3 +

36

25
z2 � 16

25
z +

3

25
; �(z) =

12

25
z4: (F.3)

Using Taylor de�nitions, the error constant is � 12
125 whereas the Pad�e de�nition gives

an error constant of C = �1
5 .
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The third order staggered backwards di�erentiation scheme has

�(z) = z3 � 21

23
z2 � 3

23
z +

1

23
; �(z) =

24

23
z
5
2 : (F.4)

The error constant using Taylor de�nitions is 1
23 , while the correct error constant is

C = 1
24 .

F.2.3 Free Parameter Methods

As discussed in Section 3.5, we have developed multistep methods that

allow for free parameters due to suboptimization of order. A nonstaggered example

of such a method (which is discussed in Section G) is a fourth order scheme with

�(z) = z4 + (8� 24s)z3 + (24s� 9)z2

�(z) =

�
17

3
� 9s

�
z3 +

�
14

3
� 19s

�
z2 +

�
1

3
+ 5s

�
z � s (F.5)

where s is a free parameter. In order to have a stable method, we must have 1
3 � s <

5
12 . Taylor expansions give the error constant as

(10+57s)
90 , while Pad�e expansions give

C = (10+57s)
180(5�12s) , where �(1) = �0(1) = 10�24s. Note that for z near 1, as s! 5

12 , our

method becomes an extrapolation method, with the Pad�e error constant correctly

re
ecting this.

F.3 Conclusions

Local truncation error for a linear multistep method can be de�ned in terms

of Taylor expansions or Pad�e expansions. Both give the same order of accuracy but

often give di�erent error constants. For Adams-type methods, there is no di�erence

between the de�nitions, but for most other schemes, the de�nitions di�er. In order

to obtain a realistic estimate of the global error to be expected from a scheme, one

should use a de�nition of error constant based on Pad�e expansions.



Appendix G

Nonstaggered free parameter methods

(The work in this appendix was done by the author.)

Free parameter methods are multistep schemes containing \free" parame-

ters due to suboptimization of order. The free parameters may be used to decrease

the error constant, increase the ISB, or often both. In addition to studying stag-

gered free parameter methods (discussed in Section 3.5), we have also examined

some nonstaggered free parameter methods and discuss one such method here as an

illlustration of opportunities in this area. We consider methods with stencils of

the following form:

u

u

u

u

2
6666664

1

�3 �3

�2 �2

�1

�0

3
7777775

While it is possible to �nd a �fth order method of this form, it is not stable

(see Section 3.6.2). We instead search for fourth order methods containing one free

parameter. The linear system of equations to be solved has the following solution
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with parameter t.

2
6666664

1

8 + 24t 17
3
+ 9t

�9� 24t 14
3
+ 9t

� 1
3
� 5t

t

3
7777775

(G.1)

This method is stable for t 2 �� 5
12 ;�1

3

�
. We note that for t = �3

8 , we recover AB4.

This method's error constant is C = 10�57t
180(5+12t) . As t! � 5

12 , the ISB of the

method approaches � 0:727 but the error constant becomes unbounded. We thus

observe a trade-o� between accuracy and stability for this method. This is illustrated

in Figure G.1. If one is willing to sacri�ce some accuracy to gain in stability, this

method would provide the means to do so.

As an example, we give the stability domain of the method that has t =

�0:41 in Figure G.2. This method has an ISB of � 0:680, and an error constant of

� 2:317. The stability domain extends to � �0:5092 on the negative real axis.
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0.2 0.4 0.6 0.8
ISB

1

2

3

4

Error Constant

Figure G.1: Trade-o� between accuracy (error constant) and stability (ISB) for
method (G.1)
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Figure G.2: Stability domain of method (G.1) for t = �0:41



Appendix H

Proof of results found in Section 3.6.1 concerning the stability

ordinates of AB, ABS, and AM methods

We wish to establish that

Theorem H.1 AB methods have nonzero ISBs only for orders p = 3; 4; 7; 8; : : : .

Theorem H.2 ABS methods have nonzero ISBs only for orders p = 2; 3; 4; 7; 8;

11; 12; : : : .

Theorem H.3 AM methods have nonzero ISBs only for orders p = 1; 2; 5; 6;

9; 10; : : : .

Theorem H.1 was proven by Bengt Fornberg, and the author extended his proof to

Theorems H.2 and H.3.

Lemma H.4 (Bengt Fornberg) Given f(x), let pn(x) be the polynomial of degree

n that interpolates f(x) at x = 0; �k; �2k; : : : ; �nk. Then,

f(x)� pn(x)

= x(x+ k) : : : (x+ nk)

"
f (n+1)(0)

(n+ 1)!
+
f (n+2)(0)

(n+ 2)!

�
x� n(n+ 1)

2
k

�
+ : : :

#
(H.1)
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Proof:

(1) Pick g(x) such that

f(x)� pn(x) = [x(x+ k) : : : (x+ nk)] g(x): (H.2)

By Lagrange's interpolation formula, pn(x) depends linearly on f(x). Then,

(f(x)� pn(x)) must also depend linearly on f(x) and thus by equation (H.2),

g(x) must also depend linearly on f(x).

(2) If f(x) = xm for m = 0; : : : ; n , then g(x) � 0 because f(x) = pn(x) for all

polynomials of degree less than or equal to n.

(3) If f(x) = xn+1, then g(x) � 1.

One can see this because xn+1�pn(x)
x(x+k):::(x+nk) = g(x) must be a constant since the

numerator and denominator have the same degree and the same roots. The

leading coeÆcients of the numerator and denominator are both 1, so this

constant must be 1.

(4) If f(x) = xn+2, then g(x) = x� n(n+1)
2 k.

Consider xn+2�pn(x)
x(x+k):::(x+nk) � g(x). This is a linear function with leading coeÆ-

cient 1 (by the same reasoning as (3)). Thus, g(x) = x+�. Multiplying, we

�nd

xn+2 � pn(x) = (x+ �) [x(x+ k) : : : (x+ nk)] : (H.3)

Since the left-hand side is missing the xn+1 term, the sum of its roots must

equal 0. Using this on the right-hand side gives

�0� k � 2k � : : :� nk � � = 0: (H.4)

Thus, � = �n(n+1)
2 k, giving the desired result.
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(5) Let f(x) =
P1

j=0 ajx
j. We �rst note that aj =

f(j)(0)
j! by Taylor expansion.

Then, we have

f(x)� pn(x)

=
1X
j=0

ajx
j � pn(x)

= [(x)(x+ k) : : : (x+ nk)] g(x) (H.5)

Thus, by items (3) and (4), we �nd

g(x) = an+1 + an+2

�
x� n(n+ 1)

2
k

�
+ : : :

=
f (n+1)(0)

(n+ 1)!
+
f (n+2)(0)

(n+ 2)!

�
x� n(n+ 1)

2
k

�
+ ::: (H.6)

Thus, Lemma H.4 is proven.

We proceed with proving Theorems H.1, H.2, and H.3.

When solving the linear problem dy
dt = �y (with � = k�), the edge of a

stability domain is described by the root � of the equation

�(r)� ��(r) = 0

when r travels around the unit circle (r = ei�). When considering whether a stability

domain can have imaginary axis coverage or not, we wish to describe the behavior

of the stability domain boundary near � = 0.

For an exact method, we would get

�(�) = i�
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because

� =
�(r)

�(r)
= ln r = ln

�
ei�
�
= i�: (H.7)

A numerical scheme of order p will instead lead to

�(�) = i� + cp(i�)
p+1 + dp(i�)

p+2 + : : : (H.8)

The sign of the �rst real term of this expansion will dictate whether the stability

domain boundary near the origin swings to the right or to the left of the imaginary

axis.

H.1 Proof of Theorem H.1: nonstaggered AB methods

For AB methods, we �nd that cp > 0 and dp < 0 (to be shown below). The

pattern for which methods have nonzero ISBs then follows from the powers of the

imaginary unit in (H.8). For example, for p = 3, then the �rst real term in the above

expansion is given by c3(i�)
4 = c3�

4. Because this term is positive, the boundary

of the stability domain swings to the right of the imaginary axis and thus we have

a nonzero ISB for this method. For p = 6, the �rst real term in the expansion

is d6(i�)
8 = d6(�)

8. Because this term is negative, the stability domain boundary

swings to the left of the imaginary axis and the ISB of this method is zero.

To �nd the values of cp and dp in the case of nonstaggered ABp methods,

we note that these schemes, when applied to y0 = �y (with � = �=k), take the form

y(t = k)� y(t = 0) =
�

k

Z k

0
(pn(t)) dt (H.9)

where pn(t) is the interpolating polynomial of y over t = [�(p� 1)k; 0].
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Now, by Lemma H.4,

y(t)� pn(t) = t(t+ k) : : : (t+ nk)

"
y(n+1)(0)

(n+ 1)!
+
y(n+2)(0)

(n+ 2)!

�
t� n(n+ 1)

2
k

�
+ : : :

#

(H.10)

so that

y(k)� y(0)

=
�

k

�Z k

0
y(t)dt+

Z k

0
(pn(t)� y(t)) dt

�

= � �
k

Z k

0
t(t+ k) : : : (t+ nk)

"
y(n+1)(0)

(n+ 1)!
+
y(n+2)(0)

(n+ 2)!

�
t� n(n+ 1)

2
k

�
+ : : :

#
dt

+
�

k

Z k

0
y(t)dt: (H.11)

When we substitute y(t) = ei�t=k into (H.11) (noting that y(n+1)(0) =
�
i�
k

�n+1
and

y(n+2)(0) =
�
i�
k

�n+2
), we �nd

ei� � 1 =
�

i�

�
ei� � 1

�
� �

ank
n+2

(n+ 1)!

�
i�

k

�n+1

� �
kbnn+3

(n+ 2)!

�
i�

k

�n+2

� : : : (H.12)

where

an =
1

kn+2

Z k

0
t(t+ k) : : : (t+ nk)dt

=

Z 1

0
s(s+ 1) : : : (s+ n)ds

bn =
1

kn+3

Z k

0
t(t+ k) : : : (t+ nk)

�
t� n(n+ 1)

2
k

�
dt

=

Z 1

0
s(s+ 1) : : : (s+ n)

�
s� n(n+ 1)

2

�
ds (H.13)

We then solve for �(�) in (H.12) and do an asymptotic expansion about i� = 0 to

�nd



114

�(�) � i� +
an

(n+ 1)!
(i�)n+2 +

1

2(n+ 2)!
(2bn � an(n+ 2)) (i�)n+3 + : : : (H.14)

By noting that the order p = n+ 1, we thus �nd our coeÆcients cp and dp

from equation H.8 to be

cp =

Z 1

0

�
x+ p� 1

p

�
dx; dp = �

Z 1

0

�
x+ p� 1

p

�
p2 + 1� 2x

2(p+ 1)
dx (H.15)

Because both integrands are nonnegative for p � 1, we thus have that cp > 0 and

dp < 0. This establishes our result that nonstaggered Adams-Bashforth methods

have nonzero stability ordinate only for orders p = 3; 4; 7; 8; 11; 12; : : : and thus

Theorem H.1 is proven.

H.2 Proof of Theorem H.2: ABS methods

For the staggered case, we proceed similarly to the above case, noting that

we are now using the polynomial approximation of y(t) on t 2 [nk; 0] to step from

t = �k
2 to t = k

2 instead of from t = 0 to t = k. Thus, equation (H.11) becomes

y

�
k

2

�
� y

�
�k
2

�
=

�

k

"Z k=2

�k=2
y(t)dt+

Z k=2

�k=2
[pn(t)� y(t)] dt

#
(H.16)

After using Lemma H.4 and substituting y(t) = ei�t=k, we have

ei�=2 � e�i�=2

=
�

k

(
�
Z k=2

�k=2
t(t+ k) : : : (t+ nk)

"
y(n+1)(0)

(n+ 1)!
+ y(n+2)(0)

�
t� n(n+ 1)

2
k

�
+ : : :

#
dt

+

Z k=2

�k=2
ei�t=kdt

)
(H.17)
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After solving for � and doing an asymptotic expansion about i� = 0, we �nd

� � i� +
cn

(n+ 1)!
(i�)n+1 +

dn
(n+ 2)!

(i�)n+3 (H.18)

where

cn =
1

kn+2

Z k=2

�k=2
t(t+ k) : : : (t+ nk)dt

dn =
1

kn+3

Z k=2

�k=2
t(t+ k) : : : (t+ nk)

�
t� n(n+ 1)

2
k

�
dt (H.19)

After substituting p = n + 1 and transforming our integrals, we �nd our

coeÆcients cp and dp from equation (H.8) to be

cp =

Z 1=2

�1=2

�
x+ p� 1

p

�
dx; dp = �

Z 1=2

�1=2

�
x+ p� 1

p

�
p(p� 1)� 2x

2(p+ 1)
dx (H.20)

Although the integrands for both cp and dp are no longer of constant sign, we can

again establish that cp > 0 and dp < 0 (for p > 2) by induction, as shown below.

Lemma H.5

Z 1=2

�1=2

p�1Y
s=0

(s+ x)dx > 0 8p � 2 (H.21)

Proof by induction:

� (p = 2):

Z 1=2

�1=2
x(1 + x)dx =

1

12
(H.22)
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� Assume (H.21) is true for p = k, so that

Z 1=2

�1=2

k�1Y
s=0

(s+ x)dx > 0 (H.23)

� Show that equation (H.21) is true for p = k + 1.

Z 1=2

�1=2

kY
s=0

(s+ x)dx =

Z 1=2

�1=2
(k + x)

k�1Y
s=0

(s+ x)dx

= k

Z 1=2

�1=2

k�1Y
s=0

(s+ x)dx+

Z 1=2

�1=2
x2

k�1Y
s=1

(s+ x)dx

(H.24)

The �rst term is positive by (H.23), and the second term is positive because

the integrand is positive on
��1

2 ;
1
2

�
, so we have that cp > 0 for p � 2 by

induction.

Lemma H.6

Z 1=2

�1=2

�
p2 � p� 2x

� p�1Y
s=0

(s+ x)dx > 0 8p � 3 (H.25)

Proof by induction:

� For p = 3, we have

Z 1=2

�1=2
(9� 3� 2x)

3�1Y
s=0

(s+ x)dx =
137

120
: (H.26)

� Assume that equation (H.25) is true for p = k so that

Z 1=2

�1=2

�
k2 � k � 2x

� k�1Y
s=0

(s+ x)dx > 0 (H.27)
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� Show that (H.25) is true for p = k + 1.

Z 1=2

�1=2

�
(k + 1)2 � (k + 1)� 2x

� kY
s=0

(s+ x)dx

= k

Z 1=2

�1=2

�
k2 � k � 2x

� k�1Y
s=0

(s+ x)dx

+

Z 1=2

�1=2

�
2k2 + xk(k + 1)� 2x2

� k�1Y
s=0

(s+ x)dx

= k

Z 1=2

�1=2

�
k2 � k � 2x

� k�1Y
s=0

(s+ x)dx+ 2k2
Z 1=2

�1=2

k�1Y
s=0

(s+ x)dx

+

Z 1=2

�1=2
x2 (k(k + 1)� 2x)

k�1Y
s=1

(s+ x)dx (H.28)

The �rst term is positive by (H.27). The second is positive by Lemma H.5,

and the third term is positive because the integrand is positive on [�1=2; 1=2]
for k � 3.

Thus, dp < 0 for p � 3 by induction so that ABS methods have nonzero

ISBs only for orders p = 2; 3; 4; 7; 8; 11; 12; : : : . (Leapfrog, p = 2, is a special case.)

H.3 Proof of Theorem H.3: AM methods

For this case, we wish to step y from t = �k to t = 0 using interpolating

data at t = 0;�k; : : : ;�(n + 1)k. (Note that this is equivalent to stepping y from

t = 0 to t = k using interpolating data at t = k; 0 � k; : : : ;�nk, which is how we

usually interpret Adams-Moulton methods.) Following the same procedure as done

in the previous two cases (and noting that p = n+ 2), we �nd that

� � i� +
ap
p!
(i�)p +

bp
2(p+ 1)!

(i�)p+1 + : : : (H.29)
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where

ap =

Z 1

0

p�2Y
s=�1

(s+ x)dx

bp =

Z 1

0

�
2x� (p� 1)2

� p�2Y
s=�1

(s+ x)dx (H.30)

Because the integrands are of constant sign on [0; 1], ap < 0 and bp > 0.

Examining the sign of the �rst real term in (H.29) allows us to conclude that

Adams-Moulton methods have nonzero ISBs only for orders p = 1; 2; 5; 6; 9; 10; : : : .

(Backwards Euler (p = 1) and AM2 (p = 2) are special cases.)



Appendix I

Proof of the staggered analogue of Dahlquist's �rst barrier

(The work in this appendix was done by the author.)

Theorem I.1 The order p of an explicit stable m-step staggered method satis�es

p �

8>>>>><
>>>>>:

m , m an even integer

m+ 1
2 , m a half-integer

m+ 1 , m an odd integer

(I.1)

Our proof of this theorem follows those done by Jeltsch and Nevanlinna [19] and

Dahlquist [5] for nonstaggered methods.

Lemma I.2 The asymptotic expansion of

zp
1� z2 log 1+z

1�z

=

1X
j=0

djz
j (I.2)

satis�es d2j+1 = 0 and d2j > 0.

Proof:

One can see that d0 =
1
2 by considering the limit of the left-hand side as

z ! 0. Also, d2j+1 = 0 because we have an even function. We divide both sides

of equation (I.2) by z and then transform z ! 1
w . We are then considering the
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expansion

w
p
w2 � 1 log

�
1+w
w�1

� =
w

2
+

1X
j=0

Æ2j+1w
�(2j+1) (I.3)

where Æ2j+1 = d2j+2. By Cauchy's Integral Formula

Æ2j+1 =
1

2�i

I
C
w2j w
p
w2 � 1 log

�
1+w
w�1

�dw

=
1

2�i

I
C

w2j+1
q

w+1
w�1

(w + 1) log
�
w+1
w�1

�dw (I.4)

where C is an arbitrary curve enclosing (�1; 1) on the real axis.

By taking our branch cut on (�1; 1) of the real axis, we thus �nd that

Æ2j+1 =
1

2�i

2
4Z 1

�1

x2j+1
q

1+x
1�x(i)

(x+ 1)
�
i� + log

�
1+x
1�x

��dx�
Z 1

�1

x2j+1
q

1+x
1�x (�i)

(x+ 1)
�
�i� + log

�
1+x
1�x

��
3
5 dx

=
1

�

Z 1

�1

x2j+1 log
�
1+x
1�x

�
p
1� x2

�
�2 + log2

�
1+x
1�x

��dx (I.5)

Because the integrand is non-negative on (�1; 1), we thus �nd that Æ2p+1 >

0 and thus that d2p > 0 in (I.2), thus proving Lemma I.2.

Lemma I.3 In the asymptotic expansion

z
q

1+z
1�z

log
�
1+z
1�z

� =

1X
j=0


jz
j (I.6)

we have 
j > 0.
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Proof:

We note that

z
q

1+z
1�z

log
�
1+z
1�z

� = (1 + z)
z

p
1� z2 log

�
1+z
1�z

� = (1 + z)
1X
j=0

d2jz
2j (I.7)

Then, by Lemma I.2, 
2j = 
2j+1 = d2j > 0, thus proving Lemma I.3.

Lemma I.4 (Germund Dahlquist) If �(z) =
Pm

j=0 ajz
j for a stable multistep

method, then all coeÆcients aj have the same sign.

Proof of this lemma can be found in [5].

We proceed with the proof of Theorem I.1.

I.1 Case 1: m a half-integer

We �rst consider the case ofm a half-integer. For this case, we can represent

the generating polynomials as

�(�) = �1=2
h
�0 + �1� + : : :+ �m�1=2�

m�1=2
i

�(�) =
h
�0 + �1� + : : :+ �m�1=2�

m�1=2
i

(I.8)

We make the Greek-Roman transformation � = 1+z
1�z and de�ne the func-

tions
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r(z) �
�
1� z

2

�m�1=2
�

�
1 + z

1� z

�

=
1

2m�1=2

r
1 + z

1� z

h
�0(1� z)m�1=2 + �1(1� z)m�3=2(1 + z)+

: : :+ �m�1=2(1 + z)m�1=2
i

�
r
1 + z

1� z

m�1=2X
i=1

aiz
i (I.9)

and

s(z)

�
�
1� z

2

�m�1=2
�

�
1 + z

1� z

�

=
1

2m�1=2

h
�0(1� z)m�1=2 + �1(1� z)m�3=2(1 + z) + : : :+ �m�1=2(1 + z)m�1=2

i

�
m�1=2X
i=0

biz
i: (I.10)

We note that because �(� = 1) = 0 (consistency), we have r(z = 0) = 0. Thus,

a0 = 0.

Because we have a stable method, all roots � of �(�) must be inside the unit

disk, with roots on the unit circle simple. So, all roots z of r(z) must lie in the closed

left-hand plane, with roots on the imaginary axis simple. Then, by Lemma I.4, all

coeÆcients ai that are nonzero must have the same sign. Since

a1 = r0(z = 0) = 23=2�m > 0; (I.11)

we have that

aj � 0 8j � 1: (I.12)
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The condition for a multistep method to be of order p can be written as

�(�)

log �
� �(�) = cp+1(� � 1)p +O

�
(� � 1)p+1

�
(I.13)

(for some cp+1 6= 0). This can be rewritten in terms of z, r(z), and s(z) as

r(z)

z
q

1+z
1�z

2
4 z

q
1+z
1�z

log
�
1+z
1�z

�
3
5� s(z) = 2p�m+1=2cp+1z

p +O(zp+1): (I.14)

We de�ne

z
q

1+z
1�z

log
�
1+z
1�z

� � 1X
j=0


jz
j (I.15)

where we know that 
j > 0 8j by Lemma I.3.

Thus, the order condition becomes

0
@m�1=2X

i=1

aiz
i�1

1
A
0
@ 1X

j=0


jz
j

1
A� m�1=2X

i=0

biz
i = 2p�m+1=2cp+1z

p +O(zp+1): (I.16)

The �rst term in the expansion of the product of series in (I.1) that cannot

possibly be cancelled by a term in the series for s(z) is the zm+1=2 term. We let

p = m + 1=2 and consider the coeÆcients of the zm+1=2 term on both sides of the

equation to �nd

m�1=2X
j=1

aj
m+3=2�j = 2cm+3=2: (I.17)

Then, because 
j > 0 and aj � 0 for all j > 0, we have

cm+3=2 =
1

2

m�1=2X
j=1

aj
m+3=2�j �
1

2
a1
m+1=2 > 0: (I.18)
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Since cm+3=2 6= 0, we �nd that p cannot equal (or be larger than) m + 3
2 .

Thus, the order p of an m-step method, where m is a half-integer, must satisfy

p � m+ 1
2 . We note that ABSp methods have p = m+ 1

2 and thus achieve equality

for this case.

I.2 Case 2: m an integer

When m is an integer, we can represent our generating polynomials as

�(�) = [�0 + �1� + : : :+ �m�
m]

�(�) = �1=2
�
�0 + �1� + : : :+ �m�1�

m�1
�
: (I.19)

After making the transformation � = 1+z
1�z , we de�ne the functions

r(z) �
�
1� z

2

�m
�

�
1 + z

1� z

�

=
1

2m
�
�0(1� z)m + �1(1� z)m�1(1 + z) + : : :+ �m(1 + z)m

�
�

mX
i=1

aiz
i (I.20)

and

s(z) �
�
1� z

2

�m
�

�
1 + z

1� z

�

=
1

2m

p
1� z2

�
�0(1� z)m + �1(1� z)m�1(1 + z) + : : : + �m�1(1 + z)m�1

�
�
p
1� z2

m�1X
i=0

biz
i: (I.21)

Again, we have a0 = 0 for consistency and aj � 0 8j � 1 for stability

(noting that a1 = 21�m > 0) by Lemma I.4.
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The order condition (I.13) becomes

r(z)

z

�
zp

1� z2
log

�
1 + z

1� z

��
� s(z)p

1� z2
= 2p�mcp+1z

p +O(zp+1) (I.22)

which, using (I.2), can be rewritten as

 
mX
i=1

aiz
i�1

!0@ 1X
j=0

djz
j

1
A� m�1X

i=0

biz
i = 2p�mcp+1z

p +O(zp+1): (I.23)

We know from Lemma I.2 that d2j > 0 and d2j+1 = 0. Then there are two

cases:

(1) m even

If m is even, then dm > 0. The �rst term in the product of the two series

in (I.23) that cannot be cancelled by a term in the series for s(z) is the zm

term. We let p = m and consider the coeÆcients of the zm terms, giving

cm+1 =
mX
i=1

aidm�i+1 � a1dm > 0 (I.24)

(using the fact that ai � 0). Thus, this term cannot equal 0 and we �nd

that such a method cannot have order m+1 (or higher). Thus, we have that

p � m for m even.

(2) m odd

If m is odd, then dm = 0 but dm+1 > 0. The �rst term in the product of the

two series in (I.23) that cannot be cancelled by a term in the series for s(z)

is the zm+1 term. We then let p = m+1 and consider the coeÆcients of the

zm+1 terms, giving

cm+2 =
1

2

mX
i=1

aidm�i+2 � 1

2
a1dm+1 > 0 (I.25)
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(using the fact that ai > 0. Thus, this term cannot equal 0 and we �nd that

such a method cannot have order m + 2 (or higher). Thus, we must have

that p � m+ 1 for m odd.

This completes the proof of Theorem I.1.

We note that BDSp methods have p = m and thus achieve equality for m

even. For m odd, we list a few examples of methods that achieve equality.

� m = 1: leapfrog

yn+1 = yn + kfn+1=2 (I.26)

The stability domain of this second order scheme extends from �2i to 2i on
the imaginary axis.

� m = 3:

yn+1 + (�27 + 24t)yn � (�27 + 24t)yn�1 � yn�2

= k
�
tfn+1=2 + (�24 + 22t)fn�1=2 + tfn�3=2

�
(I.27)

This fourth order scheme with parameter t is stable for t 2 (1; 7=6) with

stability domains consisting of only the origin.


