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Abstract

A multigraph is line-perfect if its line graph is perfect. In [1] we claimed that if every
edge e of a line-perfect multigraph G is given a list containing at least as many colors
as there are edges in a largest edge-clique containing e, then G can be edge-colored
from its lists. This note corrects a mistake in our proof.
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We are indebted to Mark Ellingham for informing us of a mistake in our paper [1], which

was found by his student Dana Gaston.

Let G = (V, E) be a (finite and loopless) multigraph. An edge-clique is a set of mutually
adjacent edges, which necessarily consists either of edges incident to some vertex or of edges
in (the submultigraph induced by) a clique of three vertices. If e € E, let wi,(e) denote the

size of the largest edge-clique containing e. If v € V, define the function wg, : £ — N by

(1)

Wl (e) = dg(v) ifeis ipcident with v,
G wh(e) otherwise,



where dg denotes degree in G. We say that G is edge-lec-choosable (lec standing for the
local edge-cliqgue number) if, for each v € V| whenever every edge e is given a list of at least

w’G,U(e) colors, then the edges of G can be properly colored from these lists.

Theorem 4.1 of [1] is an essential step towards the proof of the result stated in the
Abstract. It asserts that if G is of type K7, ,, meaning that its underlying simple graph is
of the form K, ,, then G is edge-lec-choosable. The proof we gave was to color arbitrarily
from their lists all the edges between the vertices of the two singleton sets, say x and y, and
then to delete these edges from the multigraph and to delete their colors from all other lists
to form a bipartite multigraph B. We then claimed that each edge e of B has a list of at
least wp ,(e) colors, so that the coloring can be completed by an earlier result from [1], which
says that every bipartite multigraph is edge-lec-choosable.

The proof just described is correct if v is x or y, but it fails if v is any other vertex,
since an edge of B incident with v may have a list with fewer than dp(v) (= wip ,(e)) colors.

The purpose of this corrigendum is to give a proof for this case, which we do by an ad hoc

argument below.

Let the vertex-set of G be V = {x,y,2,...,%,}, where x and y are the vertices of the
singleton sets. Let X; and Y; be the sets of edges between x and z; and between y and
z; respectively, and (in a slight change from the notation in [1]) let Z be the set of edges
between z and y. Let T; .= X; UY; U Z (i =1,...,p). If X is a set of edges, we say that a
color is present on X if it belongs to the list of at least one edge in X; let L(X) denote the

set of colors that are present on X.
We restate and prove the original theorem below.

Theorem 4.1. Every multigraph whose underlying simple graph is of the form K , is



edge-lec-choosable.

Proof. We will use the notation given above. The proof in [1] is correct if v is = or y. (It
follows that the proof is valid for p = 1, and so we may assume p > 2.) To complete the
proof, we show that edge-lec-choosability holds for any other vertex v, say v = z,. In fact,
we will prove a marginally stronger result, namely, that if G is a (not necessarily induced)
submultigraph of a multigraph of type K7, , and every edge e of G is given a list L(e) of
colors such that conditions (i)—(iii) below hold, then G can be properly edge-colored from
these lists. (Condition (iii) is somewhat weaker than the condition required for edge-lec-

choosability of z,.)

(i) If1 < i < p—1then |L(e)| > max{d(z),|T;|} foralle € X; and |L(e)| > max{d(y), |T;|}

for all e € Y};
(ii) if e € X, UY, then |L(e)| > | X, UY,| =d(z,);

(iii) if e € Z then |L(e)| > | X, UY, U Z| = |T).

Let us assume that G is a counterexample with as few edges as possible. We proceed by a

sequence of observations.

(a) X, # 0 and Y, # (. For, suppose (say) X, = 0. First color the edges of Y}, from their
lists, then color the edges of Z, which can be done by (ii) and (iii). Now the uncolored edges
form a bipartite multigraph G, and [L'(e)| > w ,(e) for each edge e of G', where L'(e) is
the set of colors from L(e) that have not been used on edges adjacent to e. Thus the edges of
G’ can be colored from their lists by the result of [1] that every bipartite multigraph is edge-
lec-choosable. But then we have colored all edges of G from their lists, which contradicts

the choice of G as a counterexample to the theorem.
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(b) There exist 4,5 € {1,...,p—1} such that |T;| > d(x) and |T};| > d(y). For, suppose (say)
|T;| < d(x) for all such 7. Color an arbitrary edge e € X, with an arbitrary color ¢ from its

list. All conditions remain satisfied.

[From now on, when we say that we color an edge with a color ¢, we assume that we
then immediately delete e from GG and delete ¢ from the list of every edge adjacent to e that
contains ¢ in its list. Let G’ be the multigraph obtained by doing this simultaneously for
every edge we have colored. If we say that “all conditions remain satisfied”, we mean that
G' satisfies the hypotheses of the theorem and so can be colored from its lists. This means

that G itself can be colored from its lists, which is the required contradiction.]

(c) The i and j mentioned in (b) are unique and equal. For, if we can choose i # j, then
(Xl + [Yil + 2] = |T3| = d(z) > [Xi] + [X;] + [ X[ + 2]
and
X5 + Y5 + 2] = T3] = d(y) = [Vi[ + [Yi] + [V | + 2],
which implies that |Y;| > |Y;| + |X,| + |Y}|, contradicting (a). This proves both uniqueness
and equality. Assume i = j = 1.
(d) L(X,) € L(X;) \ L(Y1) and L(Y,) C L(Y7) \ L(X;). For, if there is a color ¢ in (say)
L(X,) N L(Y1), then use ¢ to color one edge in X, and one in Y7; and if there is a color ¢’ in
(say) L(X,) \ L(Xy), then use ¢ to color an edge in X,. All conditions remain satisfied.
(e) L(Z) N L(X,) # 0 and L(Z) N L(Y,) # 0. For, suppose (say) L(Z) N L(X,) = 0. By (a)
and (d) we can choose colors ¢ € L(X,) and ¢ € L(Y},) and use them to color edges e € X;

and €' € Y, respectively. This causes each of d(z), d(y), d(z,) and |T1| to decrease by 1. All

conditions remain satisfied, since no edge loses more than one color from its list. (Note that,
by (d), L(X,) N L(¥;) =0, ¢ ¢ L(Y)) U L(Z), and ¢ ¢ L(X,).

4



(f) |Z] = 2. For, by (e), Z # 0 and if |Z| = 1 then we can color the unique edge in Z with a
color ¢ € L(X,) and (by (a)) color an edge of Y, with a color ¢ € L(Y,). Then each of d(x),
d(z,) and |T1] decreases by 1 and d(y) decreases by 2. The only edges that might lose more
than one color from their lists are those in Y; (2 < j < p —1) since ¢ ¢ L(Y;) U L(Y,) and
¢ ¢ L(X,) by (d), and the colored edge of Y), is not adjacent to X; (1 < j < p—1). Thus

all conditions remain satisfied.

(g) L(Z) C L(X,) U L(Y,). For, suppose there is a color ¢ € L(Z) that is not present on X,

or Y,. Use c to color an edge e € Z. All conditions remain satisfied.

By (e), (f) and (g), we can choose distinct edges eg, ey € Z such that L(ep) contains a
color ¢y € L(X,) and L(ej) contains a color ¢j € L(Y,) (in which case, by (d), ¢y # ¢p)-
Choose edges e; € X, and €| € Y,. Since |L(X,)| > d(z,) > 2 and similarly |L(Y,)| > 2,
there exist colors ¢; € L(ey) \ {co} and ¢} € L(e}) \ {¢p}. Color ey, e, e1,€] with colors
co, €y, €1, ¢} respectively. Then each of d(x) and d(y) decreases by 3, each of d(z,) and |T;|
(1 <i<p—1)decreases by 2, and |T,| decreases by 4. For each uncolored edge e, if e € Z
then |L(e)| decreases by at most 4; if e € X; UY; U X, UY), then |L(e)| decreases by at
most 2 (by (d)); and ife € X; UY; (2 < i < p—1) then |L(e)| decreases by at most 3. All

conditions remain satisfied, and the theorem is proved. O

References

[1] D. Peterson and D. R. Woodall, Edge-choosability in line-perfect multigraphs, Discrete

Math. 202 (1999), 191-199.



