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Abstract

A multigraph is line-perfect if its line graph is perfect. We prove that if every
edge e of a line-perfect multigraph G is given a list containing at least as many colors
as there are edges in a largest edge-clique containing e, then G can be edge-colored
from its lists. This leads to several characterizations of line-perfect multigraphs in
terms of edge-choosability properties. It also proves that these multigraphs satisfy the
list-coloring conjecture, which states that if every edge of G is given a list of x'(G)
colors (where X' denotes the chromatic index) then G can be edge-colored from its
lists. Since bipartite multigraphs are line-perfect, this generalizes Galvin’s result that

the conjecture holds for bipartite multigraphs.
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1. Introduction

The Dinitz Conjecture was that if each edge of the complete bipartite graph K, ,, is assigned
a list of n colors, then there is a proper edge coloring in which each edge is assigned a color
from its list. This conjecture, and more, was proved by Galvin [4]. Here we generalize

Galvin’s result to the class of line-perfect multigraphs, which includes K, ,,.

All multigraphs in this paper are finite and loopless. A multigraph G = (V, E) has
vertex-set V = V(G), edge-set E = F(G), maximum degree A = A(G), chromatic number
X = X(G), chromatic index (edge-chromatic number) x' = x'(G), clique number (order of a
largest clique) w = w(G) and edge-clique number (size of a largest edge-clique) v’ = w'(G),
where a clique (resp. edge-clique) is a set of mutually adjacent vertices (resp. edges). Note

that y and w are the same as for the underlying simple graph of G, and if L(G) denotes the

line graph of G then x'(G) = x(L(G)) and W'(G) = w(L(G)).

A multigraph G is perfect if x(H) = w(H) for every induced subgraph H of G. A

multigraph G is line-perfect if its line graph L(G) is perfect.

If (S(v):v € V)is a family of sets, called lists, then we say that G is S-choosable or,
loosely, that G' can be colored from its lists, if it is possible to choose an element ¢(v) € S(v)
for each v such that ¢(v) # c¢(w) whenever v and w are adjacent. We write Ny for the
set of nonnegative integers. Given a function f : V — Ny, G is f-choosable if G is S-

choosable whenever |S(v)| > f(v) for each v € V, and G is k-choosable if it is f-choosable



when f(v) = k for each v. The choice number or list chromatic number ch = ch(G) is the
smallest £ such that G is k-choosable. Edge-f-choosability is defined similarly for a function
f+ E — Ny, and leads in the same way to the definition of the edge choice number or list

chromatic index ch’ = ch'(@), which equals ch(L(G)).

Clearly w < x < ch and ' < x’ < ch' always. Vizing [8] and Erdés, Rubin and Taylor [3]
both proved that the difference between ch and y can be arbitrarily large. But ch’ and ' are
equal in every multigraph for which both values are known. The List-Coloring Conjecture
(LCC) is that this always holds: for every multigraph G, ch’(G) = x'(G); see Alon [1] for
a history and discussion of the LCC. Observe that the Dinitz Conjecture mentioned in the
opening paragraph is a special case of the LCC, in which G = K,,,,. Galvin [4] proved that
the LCC holds for all bipartite multigraphs, which settled the Dinitz Conjecture. We shall

prove here that the LCC holds for all line-perfect multigraphs:
Theorem 1.1. If G is a line-perfect multigraph then ch'(G) = X' (G) = W'(G).

Since bipartite multigraphs are line-perfect (see Theorem 2.1 below), this result general-
izes Galvin’s theorem. In fact we shall prove a somewhat stronger result. If e € E, let wg(e)
denote the size of the largest edge-clique containing e. Borodin, Kostochka and Woodall
2] strengthened Galvin’s theorem by proving that if G is bipartite and each edge e = uw
of G is given a list of at least max{d(u),d(w)} colors (where d(v) is the degree of vertex
v), then G can be edge-colored from its lists. This result does not extend in this form to
all line-perfect graphs, K3 being an obvious counterexample. However, when G is bipartite,
max{d(u),d(w)} can be rewritten as wi,(e), and in this form the result does extend. Clearly

/

wi(e) <w' < ¥’ < ch' for each edge e, and so Theorem 1.1 follows from the following result,

which is our main theorem.



Theorem 1.2. If G is a line-perfect multigraph then G is edge-wg,-choosable.

We shall prove Theorem 1.2 in Sections 2-4. (In fact, we shall prove a marginally stronger
result (Theorem 2.3).) In Section 5 we conclude the paper with several characterizations of

line-perfect multigraphs in terms of edge-choosability properties.

2. The outer level of the proof

Our starting-point for the proof of Theorem 1.2 is the following theorem, which is easily
extracted from the characterization by Maffray (6], Theorem 2). Here by Kj or K7, , we

mean a multigraph whose underlying simple graph is K4 or K, (p > 1), respectively.

Theorem 2.1. A multigraph is line-perfect if and only if each of its blocks is bipartite, or

*® *®
a K, ora Ky, .

If v is a vertex of a multigraph G' = (V, E), define the function wg , : £ — Ny by

) dg(v) if e is incident with v,
wa (€)= (1)
wg(e) otherwise,

where dg denotes degree in GG. The following lemma is fundamental.

Lemma 2.2. Suppose that G is formed from disjoint multigraphs G1 and G5 by identifying
vertices wy € Gy and wy € Gy into a new vertex w. Suppose that G s edge—w’Ghu—choosable
and Gy is edge-wg, ,,-choosable, where v is any verter of Gy (possibly v = wy). Then G is

edge-wg ,,-choosable.



Proof. Suppose each edge e of G is given a list of at least wy; ,(e) colors. Since wg; ,(e) >
wg, »(€) for each e € E(G1), we can edge-color G from these lists. Now a total of dg, (w)
colors are used on edges of Gy at w. Let us remove these colors from the lists on all edges of

G5 at w. If e is such an edge, then the number of colors remaining in its list is at least
Wew(e) = da (w1) 2 da(w) — da, (w1) = da, (w2) = we, 4, (€)

(regardless of whether v = w; or not); and each edge e of Gy — ws still has a list of at least
wgw(€) = wg, ,,(€) colors. Hence we can complete the coloring, since Gy is edge-wg, ,,-

choosable. [

We shall say that a multigraph G = (V,, E) is edge-lec-choosable if it is edge-wg; ,-choosable
for each vertex v € V. (Here lec stands for the local edge-cliqgue number.) Since wg, ,(e) <

wg(e) for each edge e, the following result obviously implies Theorem 1.2.

Theorem 2.3. Fuvery line-perfect multigraph is edge-lec-choosable.

Proof. In the next two sections we shall prove the edge-lec-choosability of every bipartite

* .

multigraph, every K7J, and every K7, ,; that is, every block of a line-perfect multigraph is

edge-lec-choosable. Assuming these results, we now prove Theorem 2.3 by induction over

blocks.

Let G = (V, E) be a line-perfect multigraph, and let v € V. We must prove that G is
edge-wg ,~choosable. There is no loss of generality in supposing that G is connected. If G
has only one block, then we may assume it is edge-lec-choosable by the previous paragraph.
So suppose that G has more than one block. Then it has at least two endblocks (where

an endblock is a block containing exactly one cutvertex). Let G5 be an endblock of G not



containing v except possibly as its cutvertex w, and let (G; be the union of all blocks other
than GG5. Then v € GGy, and G has one block fewer than G, and so we may suppose by
induction that 1 is edge-lec-choosable, hence edge-wg;, ,-choosable. Likewise G, is edge-lec-
choosable, hence edge-wg, ,,,-choosable, where w, is the vertex of Gy corresponding to w in
G. It follows from Lemma 2.2 that G is edge-wg ,-choosable. Since this holds for all v € V/,

it follows that G is edge-lec-choosable, and Theorem 2.3 is proved. O

To complete the inner level of the proof of Theorem 2.3, and hence of Theorem 1.2, we
need to prove that every block of a line-perfect multigraph is edge-lec-choosable. This is

done in Sections 3 and 4.

3. Bipartite multigraphs

Throughout this section, G = (V, E') will be a bipartite multigraph with partite sets U, W,
so that V =UUW. Let ¢: E — Z be a (proper) edge-coloring of G, to be chosen carefully
later. If e, e’ € E we write e — €' if e, €’ are adjacent at a vertex u € U and c¢(e) > ¢(€'), or
at a vertex w € W and c(e) < c(¢'). (It follows that if e, e’ are parallel edges then e — ¢’
and ¢/ — e.) Let d'(e) denote the number of edges ¢’ such that e — €’. The following
result is implicit in Galvin’s paper [4], and it is stated explicitly (and given a proof from first

principles, extracted from [4] and independent of previous references) as Corollary 1.1 of [2].
Theorem 3.1. If f(e) > df(e) for each edge e of G, then G is edge-f-choosable.

Theorem 3.1 immediately implies Galvin’s theorem that ch'(G) = }/(G), since if ¢ : E —

Z is any (proper) edge-coloring of G with x/(G) colors then evidently df(e) < x'(G) for



each edge e. However, we can get stronger consequences from Theorem 3.1 if we choose ¢
more carefully. For example, if v € W and we ensure that the edges incident with v get the
lowest d(v) colors, then it is easy to see that df(e) < d(v) for each of these edges. Borodin,
Kostochka and Woodall [2] restricted the coloring in a different way in order to prove their
result that every bipartite multigraph is edge-wg,-choosable. Here we combine both of these
ideas in order to extend the result of [2] from edge-wj,-choosability to edge-lec-choosability.
We use the following result from [2], whose short proof we include for completeness. If M is
a matching (a set of nonadjacent edges), then V(M) denotes the set of endvertices of edges
in M; and if X is a set of vertices, then N(X) is the set of neighbors of vertices in X. The

notation e = uw impliesu € U, w € W.

Lemma 3.2. If |U| < |[W| and W contains no isolated vertices, then G contains a

nonempty matching M such that whenever e = uw € E and w € V (M), then uw € V(M).

Proof. Clearly [N(W)| < |U| < |W/|. Let X be a minimal nonempty subset of W such that
|IN(X)| < |X]|. Then |N(X)| = |X| and there is a matching M such that V(M) = XUN(X).
(If | X| = 1, this holds because W contains no isolated vertices. If |X| > 2, it holds by the
Kénig-Hall theorem and since |[N(Y)| > [V| whenever § G YV G X.) Clearly M has the
required property. O

We are now in a position to prove the main result for bipartite multigraphs, whose proof

closely follows the proof of Theorem 3 in [2].
Theorem 3.3. FEvery bipartite multigraph is edge-lec-choosable.

Proof. Let G = (V, E) be a bipartite multigraph where V"= U UW as before, and let v be

an arbitrary vertex of G. We must prove that G is edge-w ,-choosable. In view of Theorem

7



3.1, it suffices to construct a coloring ¢ : E — Z such that

d; (€) < wg,(e) (2)

for each edge e. We do this by induction on |E|, noting that any coloring ¢ will do if
A(G) =1, when d (e) = 0 < wg ,(e) = 1 for each edge e. So suppose A(G) > 2. W.lLo.g.
suppose v € W. We may assume that G has no isolated vertices. Note from (1) that if

e = uw then
/ d(v) if w=u,
waple) = (3)
max{d(u),d(w)} otherwise,
where d = dg denotes degree in G.
If |U| < |W|then |U| < |W \ {v}|. Applying Lemma 3.2 to the graph G — v, we deduce
that G—v contains a nonempty matching M such that whenever e = uw € E and w € V(M),

then u € V(M). By the induction hypothesis, G \ M has a coloring ¢’ : E'\ M — Z such
that
T5(e) < whaara(€) < wiale) @)
for each edge e. Let c(e) := c(e) ife € E\ M, and if e € M let ¢(e) be greater than any color
in d(E\ M). If e = uw € M then clearly df(e) < d(u) < wg ,(e) by (3), since w # v. If
e =uw ¢ M then (2) follows immediately from (4) if d}(e) < d;(e). But if e = uw ¢ M and
df(e) > d}(e), then df (e) = df(e) + 1 and w € V(M); this implies w # v and u € V (M),
so that wg ,(€) = w5, (€) +1 by (3). Now (2) follows from (4).
If |U| > |W| then Lemma 3.2 implies the existence of a nonempty matching M such that
whenever ¢ = uw € E and v € V(M), then w € V(M). Define ¢’ and ¢ as before, except

that if e € M we let ¢(e) now be less than any color in ¢(E \ M). As before, it is easy to

see that (2) holds: If e = uw € M then clearly d (e) < d(w) < wg,(e) by (3), regardless
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of whether w = v or not. And if e = uw ¢ M and d}(e) > d(e), then d}(e) = df(e) + 1
and u € V(M); this implies w € V(M), so that wg,(e) = wg y,(e) + 1 by (3), again
regardless of whether or not w = v. So (2) holds in all cases, and the proof of Theorem 3.3

is complete. [

4. Nonbipartite blocks

In order to complete the proof of Theorem 2.3 it remains to prove that the remaining types
of blocks mentioned in Theorem 2.1 are edge-lec-choosable. We do this in the following two

theorems.
Theorem 4.1. FEvery multigraph of type K7 ; , is edge-lec-choosable.

Proof. Let G = (V, E) be such a multigraph and let v be an arbitrary vertex of G. We
must prove that G is edge-wg ,-choosable. So let (S(e) : e € E) be a family of lists with

|S(e)| = wg,(e) for each edge e € E.

Let x,y be the vertices in the two singleton partite sets, and let X be the set of edges
between x and y. Then all edges in X belong to every maximal edge-clique in G, and so
Wi x 0 (€) = wg,(€) — [X] for each edge e € G\ X. It is easy to color the edges in X from

their lists; do so, and let the set of colors used be C. Now
1S(e)\ C| > 15(e)] = [X] > wg(e) — [X] = we x(€)

for each edge e € G\ X, and since G\ X is bipartite, the coloring can be completed by

Theorem 3.3. O



To show edge-lec-choosability for K}, it is more convenient to prove the property for a

larger class of multigraphs.

Theorem 4.2. FEvery multigraph with (exactly) four vertices is edge-lec-choosable.

Proof. Let G = (V, E) be such a multigraph and let v be an arbitrary vertex of G. We
must prove that G is edge-w -choosable. We do this by induction on |E|, noting that it
follows from Theorem 3.3 if |E| < 2, when G is bipartite. So suppose |E| > 3, and let

(S(e) : e € E) be a family of lists with |S(e)| > wg ,(e) for each edge e € E.

Suppose first that GG contains two nonadjacent edges e;, e; whose lists have a color in
common. Give that color to e;,es and delete it from the lists of all other edges. Let
H := G\ {e1,e3}. Since every maximal edge-clique in G contains exactly one of ey, ey, it
follows that wy ,(e) = wg,(e) — 1 for every edge e of H. Thus H satisfies the induction
hypothesis, and we may assume inductively that we can edge-color it from its lists. This

gives the required edge-coloring of G.

So we may now suppose that any pair of nonadjacent edges have disjoint sets of colors.
In this case we prove that we can give each edge of G a different color by using Hall’s
theorem to prove that the family of lists has a system of distinct representatives. To do
this, it suffices to prove that for every subset X C E, |S(X)| > |X|, where S(X) :=
U.cx S(e). Suppose first that all edges of X are incident with v. Then, for any e € X,
[S(X)] = [S(e)| > wg,(e) = d(v) > |X]|. Secondly, suppose that the edges of X are
mutually adjacent but are not all incident with v. Then, for any e € X that is not incident
with v, |S(X)| > [S(e)| > w ,(e) = wi(e) > | X|. Finally, if not all edges of X are mutually

adjacent, then there must be nonadjacent edges e;, e, € X such that e; is incident with v
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and e, is not, and then

SO = [5(en)| +[5(e2)] = d(v) + [E(G = v)| = |E] > [X].

Thus |S(X)| > |X]| in all cases, and the family of lists has a system of distinct representatives

as required. [

5. Characterizations

We conclude the paper by using Theorem 1.2 to obtain several characterizations of line-
perfect multigraphs in terms of edge-choosability properties. It will be useful to recall the

following well-known result of Lovész [5].

Theorem 5.1. If a vertex v in a perfect graph is replaced by a complete graph, all of whose

vertices are adjacent to all former neighbors of v, then the resulting graph is perfect.

Repeated application of Theorem 5.1 to the line graph of a simple graph gives easily:

Corollary 5.2. A multigraph is line-perfect if and only if its underlying simple graph is.

The following simple result will also be useful.

Theorem 5.3. Fvery submultigraph of a line-perfect multigraph is line-perfect.

Proof. If G is a (line-perfect) multigraph then removing edges (and, optionally, isolated
vertices) from G corresponds to removing vertices from L(G). Since every induced subgraph

of a perfect multigraph is also perfect, the result follows. O
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Now let G = (V, E) be a multigraph and let f,g : F — N; be two functions. We say
that G is edge-(f : g)-choosable if, for every family (S(e) : e € E) of lists on edges such that
|S(e)| = f(e) for each e € E, we can find subsets (T'(e) : e € E) with T'(e) C S(e) and
|T(e)| = g(e) for each e € E, such that T'(e) N T'(e') = ) whenever e, e’ are adjacent. (Here
we may replace f or ¢g by an integer denoting the constant function with that value.) Let C

denote the set of all edge-cliques in G. Given g : E' — Ny, let g(C) := >_ .. g(e) for each C

in €, and define g,qr, : F — Ny by
g(e) :=max{g(C):C € €} and gy(e):=max{g(C):ec C € C}.

(So g is a constant function.) Then Theorem 1.2 has the following consequence.

Theorem 5.4. Let G = (V, E) be a multigraph. Then the following statements are equiva-
lent.

(a) G is line-perfect.

(b) For every submultigraph H of G, ch'(H) = w'(H).

(c) Every submultigraph H of G is edge-w';-choosable.

(d) For every function g : E — Ny, G is edge-(g: g)-choosable

(e) For every function g : E — Ny, G is edge-(gy : g)-choosable

Proof. If G is line-perfect then so is every submultigraph H of G, and so (a) = (c) by
Theorem 1.2. Since wy(e) < w'(H) < X'(H) < ch'(H) for each edge e of H, (¢) = (b) = (a);
thus (a)—(c) are equivalent.

To show (d) = (b), suppose H C G and define g : E(G) — {0,1} by g(e) :=1if e € H,
0if e ¢ H. Then for each edge e € H, g(e) = w'(H), as needed. (If e ¢ H then, since

g(e) =0, (d) requires no coloring for e from its list.)
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Since gr(e) < g(e) for each edge e of G, (e) = (d). It remains to prove only that
(a) = (e).

So suppose that G is line-perfect, and let g : E — Ny and (S(e) : e € E) be given such
that |S(e)| > gL(e) for each e € E. Delete each edge e for which g(e) = 0, and if g(e) > 0
then replace e by a set X (e) of g(e) parallel edges, each of which is given the same list S(e).
Call the new multigraph F'. Then g,(e) = wi(f) for each e € E and f € X(e). Moreover, by
Theorems 5.1 and 5.3, F'is line-perfect. So Theorem 1.2 implies that F' is edge-w'>-choosable.
Therefore we can edge-color F' from its lists. If the color on each edge f of F'is called c(f),
and we now give each edge e of G the set of colors {¢(f) : f € X(e)}, then we have given e
a set of | X (e)] = g(e) colors from S(e), as required for (e). This shows that (a) = (e) and

completes the proof of Theorem 5.4. [

Galvin [4] proved that a bipartite multigraph with maximum degree A is edge-(kA : k)-

choosable for every positive integer k; and we can generalize this as follows.

Corollary 5.5. Let G be a line-perfect multigraph. Then G is edge-(kw': k)-choosable and

edge-(kwg, : k)-choosable for every positive integer k.

Proof. Apply (d) and (e) of Theorem 5.4 with g(e) = k for every edge e. [

Erdés, Rubin and Taylor [3] asked whether, for a,b,k € N, every graph that is (a:b)-
choosable is necessarily (ka: kb)-choosable. (Indeed, it seems possible that every graph that
is (f:g)-choosable is also (kf:kg)-choosable.) For perfect line graphs (line graphs of line-

perfect multigraphs) the answer to their question is yes.

Corollary 5.6. Let G be a line-perfect multigraph that is edge-(a :b)-choosable for some

a,b € N. Then G is edge-(ka : kb)-choosable for every positive integer k.

13



Proof. We first observe that a line-perfect multigraph G is edge-(c : d)-choosable if and only
if ¢ > dw'. The “if” part follows from Corollary 5.5 and the “only if” part follows by assigning
every edge in a maximum edge-clique the same list. We now have the series of implications:

G is edge-(a: b)-choosable = a > bw' = ka > kbw' = G is edge-(ka: kb)-choosable. O
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